ELECTRONICS Australia July, 1967

Incorporating RADIO, TELEVISION \& HOBBIES Vol. 29 No. 4

3/- N.Z. $35 \mathrm{c}(3 / 6)$ N.G.

ASSEMBLING A SILICON TRANSISTOR
The impact of space research - Intelsat III 60W guitar amplifier - FET volimeter problems

\title{

COMPLETE STAR
24-Watt Stereo Amplifier

THE STAR SA-30

}

THE STAR SA-30

}

FULL
STEREO CONTROLS

SPECIFICATIONS
Power Output: 12 watts per channel stereo. 24 -watts r aural operation. Frequency Response: 20-100,000 CP 1 db at 1 watt, $50-50,000$ CPS $\pm 1 \mathrm{db}$ at 12 watts. Hum Noise: Mag Phone-56 db below rated output, Tuner. db below rated output. Distortion: less than 1\% total monic distortion at 12 watts (1 KC), less than $.25 \%$ harmonic distortion at 1 watt (1 KC), Sensitivity: Low L (Mag Input) 5 mv at full output, High Level 6 v at full put. Outputs: Dual 8 and 16 ohm impedance speaker puts. Dual Tape outputs, Tube Complement: Total o 3-12AX7, 4-6GW8, 1-5AR4.

Dual 12-Watt Stereo Amplifier
Coupled With a Versatile Stereo Preamplifier ... Performance
The Equal of Units 2 \& 3 Times Its Power \& Price.

CHECK THESE QUALITY FEATURES

Stereo Headphone Jack
Independent Concentric Bass \& Treble Controls For Each Channel

Concentric Volume Balance Control
Frequency Response: 20-100,000 CPS
$\pm 1 \mathrm{db}$ at 1 Watt
Hum \& Noise-73 db Below Rated Output
High Sensitivity Allows Use With All Stereo Cartridges

STAR MATCHING LOUD SPEAKER

SPECIFICATIONS

Dimensions $22^{\prime \prime} \times 17 \frac{5^{\prime \prime}}{}{ }^{\prime \prime} \times 4 \frac{4^{\prime \prime}}{}$ No. of Loudspeakers 10 (5 to each cabinet) Impedance 8 ohms. Output 25 watts.

MAGNECORD AUSTRALASIA PTY. LTD., CHAPMAN HOUSE, 210 CLARENCE ST SYDNEY. PHONE 29-1704. Telephone No. 31-0341, Brisbane.

ELECTRONICS

corporating "RADIO, TELEVISION and HOBBIES"

Australia
C certified circulation in excess of 47,000 .
Volume 29, No. 4

Editor:

NEVILLE WILLIAMS, M.I.R.E.E. (Aust.)
ssistant Editor:
PHKLLIP WATSON. A.M.I.R.E.E. (Aust.)
Technical Editor:
JAMIESON ROWE. B.A. (Syd.). B.SC.
(Technology, N.S.W.), A.M.I.R.E.E. (Aust.).
Technical Staff:
IAN POGSON (VK2AZN).
ANTHONY LEO (VK2ZHK).
HARRY TYRER.
JOHN HORSFIELD.
ROBERT FLYNN.
LEO SIMPSON.
Editorlal Office,
12 th Floor, 235-243 Jones Street, Broadway, Sydney. Australia. Phone
$2-0944$. Ext. 2531 , $2525-6-7$.

Postal Address:
Box 2728, G.P.O., Sydney, Australla.
Advertising:
SELWYN SAYERS, Mgr.
BILL SUMMONS, Rep., Sydney
Offices: 8th Foor, 235-243 Jones Street, 2-0944. Ext Australia. Phone CLARRIE LEVY, Rep.. Meibourne. 392 Little Collins Street. Phone 67-8i31.

Clrculation:
A. PARKER, Mgr. $235-243$ Jones Street.

Broadway. Sydney, Australia. Phone 2-0944, Ext. 2505, 2509.
Subscription Rates-See tack page.
Representation:
Meibourne-John Fairfax \& Sons Ltd.,
392 Little Collins St. Phone $67-8131$,
Brie Colins St. phone 67.8131
Brisbane-Sungravure Pty. Ltd. 78
Elizabeth Street. Phone $2-6688$.
Adelaide - John Fairfax \& Sons Ltd.,
104 Currie Street. Phone $51-3502$. 104 Currie Street. Phone 51-3502.
Perth-Sungravure Pty. Ltd., 847 Hay Perth—Sungravure Pty. Ltd., 847 Hay
Street-Pione $23-4513$. Newcastle, N.S.W.-Associated NewsNewcastie, N.S. W. Associated News-
papers Lid., 22 Bolton Street. Phone
$2-3696$. 2-3696.
London-JJohn Fairfax \& Sons (Aust.) Ltd., Reuter Building. 85 Fleet Street. New York -"The Sydiney Morning Herald"' Ltd., "Times Annex." 229 West 43 rd Street.
Distribution:
Distributed in N.S.W. by Sungravure
Pty. Ltd. Jones St.. Broadway Sydney Pty. Ltd. Jones St., Broadway, Sydney, N.S.W.i in Victoria by Sungravure Pty.
Ltd., 392 Litte Collins street, Melbourne: In South Australia by Sungravure Pty Ltd. ${ }_{\text {Adelaide: }}{ }^{104}$ Western Australla Adelaide: in Western Australla by Gordon and Gotch (A'sia) Ltd.: in New Zealand by Truth (N.Z.) Ltd.: in Tasmania by Davies Bros. Ltd.., "Mercury,"
Hobart.

Technical Queries

Quite early in the history of what is now "Electronics Australia" we made provision for a postal query service, mainly with the object of assisting readers who might encounter difficulties with one of our projects. From this small beginning a situation has gradually developed where, faced with an electronic problem, any one of a hundred thousand or more readers are likely to drop twenty cents into an envelope with a request that "Electronics Australia" sort it out for them!

We've struggled for years to cope with the correspondence, trying to give whatever help we could. We've streamlined our procedures to the limit, in an effort to reduce inroads on staff time . . . but to little avail. We have reached the intolerable situation where the handling of postal queries is seriously prejudicing our very ability to produce the magazine itself. We have simply had to draw a firm line, as set out in the panel on page 155. In future:

- We will supply back numbers, tearsheets, reprints, photographs, etc., for the amounts as set out. Where a need can be stated only in general terms, we will do our best to select something from our files which may be helpful.
- As a mark of good faith, we will maintain a postal reply service in relation to articles and projects in the magazine for a period of twelve months after publication.
- We must politely but firmly refuse to answer through the post, questions relating to older projects, to special designs or modifications, or to commercial equipnient.
- Questions not eligible for answer by post may be submitted for possible answer through the columns of the magazine. Each month, we will select those which appear to be typical and interesting and publish both question and comment in our "Answers to Correspondents" section.

It is not a pleasant task having to impose limitations on a service which I, personally, have sought to maintain for over twenty-five years. It would be even more unpleasant if I knew that we were offering less than other comparable journals. In fact, this is not the case and, even in its amended form, our reader service compares more than favourably with any other electronics magazine that I know of, from anywhere in the world.

ully, 1967
Silicon Planar Transistors 8
Computer Draws Man in Action 15
Helical Colour TV Recorder 15
The Impact of Space 18
Review-Auto Speed Regulator 23
Review-World Satellite Cover 25
Scientific and Industrial News. 29
Design Factors of FET Voltmeter 36
Semiconductors-Gunn Effect 47
Guitar Amplifier 117 48
Serviceman 57
Basic Radio Course- chapter 25 61
Compatible SSB Modulation Tests 71
Forum 73

Playmaster Stereo Amp. 118 . 77
Reader Built lt 89
Know Your Gramophone-
part 10 90
Answer Man 97
Audio Topics-Compatible Pickups Not Records 101
Classical Reviews 104
Documentary Records 109
Variety Fare 113

Trade Reviews and Releases . 124
Technical Books, Publications . 132
Amateur Band News and Notes 137
Listening Around the World . . 148
Answers to Correspondents . . 155
Classified Advertisements . . . 159
Classified Advts Form 160
Subscription Form 160
Advertisers Index 160
Errata and Notes 55

COVER PICTURE: Taken at the Fairchild factory in Croydon, Victoria, the picture shows a vital step in the production of silicon Planar transistors. The tiny dice - the actual trunsistor - now attached to the "header" assembly, is connected by ultra-fine wires to the external connecting leads. (See article on page 8.)

BROADWAY ELECTRONICS

HI-FI outfits... to suit most homes

Here are two popular combinations from our extensive range

INSTROL-PLAYMASTER No. 106 AMP/TUNER. DUAL 1010A HI-FI RECORD CHANGER. INSTROL-PLAYMASTER BOOKSHELF SPEAKERS. INSTROL No. 50 COMBINATION CABINET.

COMPLETE PRICE $\mathbf{\$ 2 8 2 . 9 0}$.

INSTROL ATI AMPLIFIER/ TUNER.
DUAL 1009SK RECORD CHANGER.
SHURE or ADC Magnetic cartridge.
WHARFEDALE SUPER 8RS/ DD SPEAKERS.
(All units fitted to MODULE CABINETS)
Including perspex cover COMPLETE PRICE $\$ 400.00$

Yes, we carry a range of imported loudspeakers, players, amplifiers and tape recorders. Please state your requirements and we will gladly quote. All well-known brands stocked.

INSTROL
PLAYMASTER FISHER
ROLAND
TRIO
SANSUI
WHARFEDALE GOODMANS SHURE ADC DECCA

LABCRAFT ALL BALANCE
 DUAL ELAC GARRARD SONY BRENELL MINICONICS AKAI TEMPO LEAK QUAD

INST:BOL-PLAYMASTER

make your own cabinets and

 save \$ \$ \$

A complete range of high quality Hi-Fi Cabinets. Tailored to suit the equipment of your choice, and most economical. In the Instrol range there are over 20 equipment and speaker cabinet designs. Each is available, built and polished or in Kit form to make yourself. A hammer, screwdriver, and a few hours of your time is all you require to make your own. All parts pre-cut, best quality materials, full instructions supplied-all for little more than half the cost of ready made cabinets. It's great fun too-but why not send or call for the free Instrol Cabinet Brochure? Profusely illustrated with full specifications and measurements.

Rigidly constructed using only best quality veneered panels in oiled Teak, Queensland Maple and Walnut, these Instrol Player/Changer Stands are widely accepted throughout the $\mathrm{Hi}-\mathrm{Fi}$ Trade for most makes and models of players and changers. Size of player's top is $154^{\prime \prime}$ wide by $14 \frac{1^{\prime \prime}}{}$, and the inside depth is $3^{\prime \prime}$. A neatly set-in protective base with rubber feet is included. For a small extra charge, we can supply the base ready cut for your player or changer.
High grade perspex covers, as illustrated are available either grey tinted or clear and in two sizes: $15^{\prime \prime} \times 14^{\prime \prime} \times 34^{\prime \prime}$ and $15^{\prime \prime} \times 14^{\prime \prime} \times 5 z^{\prime \prime}$. The cover can be supplied fitted with stayup type hinges if required.

	N.S.W.	QLD., VIC.,	TAS.	$\begin{aligned} & \text { OTHER } \\ & \text { STATES } \end{aligned}$
Player Stand	70c	95c		\$1.20
Perspex Cover	95c	\$1.20		\$1.60

When ordering please add Registered Postage.

BROADWAY ELECTRONICS

(SALES) PTY. LTD.

32 GLEBE PT. RD., GLEBE, N.S.W.
Phone: 68-1171.
(Only 100 yards from Broadway and open Saturday mornings.)

PLEASE NOTE: Our Audio Showrooms are at Glebe, and the Phone is $68-1171$. This does not yet appear in the telephone directory. Our spare parts, test equipment, kit sales, etc., are still at the original address, 206 Broadway Phone 211-4224 (3 lines). Only the Glebe Store is open on Saturday mornings.

NAME
ADDRESS \qquad
Oiled Walnut or Queensland Maple
$\$ 8.00$
Oiled Teak or matching colour, $\$ 9.65$
Extra for cutting to template .. $\mathbf{\$ 0 . 7 5}$

PERSPEX COVERS

15 in $\times 14$ in x 3 ifin $\$ 9.00$
15 in x 14in x 5 sin \$10.50
Ready hinged extra \$1.50
phone or post coupon for catalogue reaured.

The most sensitive tape for the finest in sound AGFA PE RECORDING TAPES

STRETCH RESISTANT

Eliminates

sound fluctuations . .

 reduces wear on recorder heads

Agfa Recording Tapes have what any true tape enthusiast wants-greater clarity, sensitivity, uniformity, durability and wider range. Agfa PE (Polyester) Tapes are pre-stressed and stretchresistant to eliminate sound fluctuations, and abrasion and wear-resistant to give you the longest, strongest tape life ever. Agfa Recording Tapes include Long Play, Double Play and Triple Play in a wide range of lengths and spool diameters. All three types of Agfa tapes are now available in various spool sizes in the new Novodur Cassettes. These plastic, almost unbreakable cassettes are excellent for library storage.

Write for FREE leaflet on Agfa recording tapes and accessories

[^0]
To AGFA-GEVAERT LIMITED P.O. Box 48, Nunawading, Victoria

Name.
PLEASE PRINT
Address. \qquad

Please help us rescue Joe.

Joe is our storeman at Fairchild. He's in over his head with CuL Integrated Circuits. Buy some! And help us get him out from under. Prices reduced up to 30\% (Joe's wife's suggestion).

Counting Micro Logic Integrated Circuits are now freely available ex stock from Fairchild. All three devices $(9958,9959,9960)$ are new, improved, and fully compatible. They are also reduced in price. So if you're displaying figures, you'd be wise to get with our $\mathrm{C} \mu \mathrm{L}$ devices right away.

To help you, there is a diagram below to illustrate the basic functions. Plus circuit diagrams and some relevant details.

For fuller information, write for free data sheets and applications bulletins by completing and mailing the enclosed card. Joe's wife will be pleased you're taking an interest.

:our flip-flops, a count input amplifier and a reset nput are interconnected internally, so 9958 counts rom 0 to 9 inclusive in 1-2-4-8 binary coded decinals (BCD). Four outputs are labelled Z_{1}, Z_{2}, Z_{4} ind Z_{8}. A high level pulse resets the circuit to :ount 0 . It remains at this state until low level voltige starts it counting. 9958 can be preset to any irbitrary number by pulling down the appropriate $\therefore 1_{1} 2_{2} ; 2_{3} ; 2_{4}$ pins. Maximum input is 2 MC juaranteed, 4 MC typical. Count inputs are to 2.0 1 Hz . V_{cc} range is 3.3 V to 5.5 V . Operating emperatures range from $0-75^{\circ} \mathrm{C}$. Packages are 4 pin Dual-In-Line. Loading rules are given in our ree 9958 data sheets. The 9960 data sheet and tPP118/2 show applications typical of counters, JVM's and test equipment. Another use is as a 0:1 frequency divider.

JEW $\quad 1-24$ \$11.20; 25-99 \$9.00;
'RICES: 100-999 (SINGLE) \$7.50; 100-999 (MIXED) \$7.85.

1959 is a static storage register or a memory levice. Information from 9958 is sampled and held n 9959 until new information is entered. So it is a nemory circuit consisting of four latch circuits and I common gate driver. When the gate input is high, 10 information enters and 9959 remains static. When the gate input is low, new information is intered into each latch and transferred to the outut. At a greater count frequency than 10 CPS, he 9959 must be used to display the sampled count. t is not required at lower than 10 CPS, or when inly the final count need be displayed. Operating emperatures are 0 to $75^{\circ} \mathrm{C}$, extendable to 55 to $25^{\circ} \mathrm{C}$. V_{cc} range is 3.3 V to 5.5 V . Package is 16 jin Dual-In-Line. 9959 can also be used in conunction with RT $\mu \mathrm{L}$ elements. Loading rules are jiven on the 9959 data sheet - free from Fairchild.

IEW $\quad 1-24$ \$10.05; 25-99 \$8.00;
'RICES: 100-999 (SINGLE) \$6.75; 100-999 (MIXED) \$7.05.

Jompatible with 9958 and 9959, 9960 is a monolithic levice which decodes $B C D$ into decimal numbers and drives the appropriate cathodes of a gas filled ead-out tube (or Nixie). It accepts only 4-line 1-2-$1-8$ BCD information from binary 0 to binary 9 nclusive. Higher Count (10-15) input causes two sutputs to turn on simultaneously. 9960 works at specific voltages, with logic levels also supplied sy $\mathrm{RT} \mu \mathrm{L}$ devices. To withstand the high voltages of the read-out tube, the 9960 breakdown voltage s 55 V min and typically 75 V . The 'on' output can jass up 10 mA , adequate for even a 'Jumbo' size ube. 9960 is not recommended for use by itself is a decoder. Operating temperatures range from) $-75^{\circ} \mathrm{C}$, extendable to $-55^{\circ} \mathrm{C} . \mathrm{V}_{\text {cc }}$ range is 3.3 V to 5.5 V . Package is 16 pin Dual-In-Line. Loading rules are given on the free 9960 data sheet.

C $\mu \mathrm{L} 9959$ 4-BIT BUFFER-STORAGE ELEMENT

$\mathrm{C} \mu \mathrm{L} 9960$ DECODER DISPLAY DRIVER

FAIRCHILD AUSTRALIA PTY. LTD.

SILICON PLANAR

Fabrication of transistors using the Planar (T.M.) process involves two basic concepts: (1) gaseous diffusion of impurity atoms into the host semiconductor wafer, nnd (2) the use of a silicon dioxide layer on the surface of the wafer, which by its virtual "capacity" to the impurity atoms functions both as a protective sheath for the wafer and also -when appropriately etched away using a photolithographic technique - as a selective mask to control the diffusion.

Two types of transistors are produced using the Planar process - those in which the basic wafer prior to the diffusion processes consists of \mathfrak{a} host semiconductor substrate to which has already been epitaxially grown a suitably doped collector layer, called for convenience "epitaxial devices," and those in which the basic wafer consists only of homogenous host "semicenductor. The latter are called "non-epitaxial devices."

Non-epitaxial wafers are produced from single crystal ingots grown pre-doped as either " N " or "P." The ingots grown for these wafers are lightly doned; in other words. they are of high resistivity because the breakdown behaviour of the resulting transistor is determined by this starting resistivity. Resistivity ranges are from $0.5 \mathrm{ohm}-\mathrm{cM}$ to 50 ohm- cM , depending on the device being made. The ingots are grown from molten silicon at approximately 1500 deg. C.

To maintain substantially uniform doping throughout the crystal and thus get more usable wafers for a given product, a dopant must be chosen that has very close to the same solubility in molten and crystalline silicon, so that the dopant will distribute itself evenly. "N" ingots are doped

With the aid of a binocular microscope, an operator attaches the tiny wires which connect the emitter and base of the dice to the external connecting leads. These are part of the "header" assembly. to which the dice is attached.
with phosphorus, while "P" ingots are doped with boron After the ingot hes been grown, it is sliced with a diamons saw into wafers approximately 14 mils. thick (. 014 inches o 350 microns). Wafers from the correct resistivity range ar selected, then lapped, etched and polished so that th surface is mirror-like. The wafer at this point is npproxi mately 8 mils thick, and of a diameter such that it wil ultimately be capable of division into a great many individua transistor dice.

Epitaxial wafers are produced in a similar manner The ingots grown are very heavily doped to obtain ver: low resistivity substrates. Typical resistivity for an epitaxia substrate is .005 ohm-cM. The substrate is then sawn, lapped polished and etched to wafers approximately 5.5 mils thick Next a high resistivity epitaxial film is grown on the 10 of these substrate wafers. This process takes place in a epitaxial reactor at approximately $1200^{\circ} \mathrm{C}$. Depending upor device design, this film can be very thin - 4 micron $(.2 \mathrm{mil})$ or relatively thick - 18 microns $(.75 \mathrm{mil})$. Th film is grown in such a way that the atoms continue the single crystal structure of the wafer - hence the tern "epitaxial."

The reason for the epilaxial process is twofold. First and most important, epitaxial devices have lower Vce (sat (collector-emitter saturation voltage) and larger useful cur rent ranges while maintaining high breakdown voltages Secondly, because double-diffused devices contain most o the effective stered charge in the high resistivity collecto regions, reduction of the physical volume of the high voltag collector region lowers storage time and thus improve switching times.

Figures 1 and 2 depict cross-sections of nen-epitaxia and epitaxial wafers.

The next steps in the process involve multiple selectivi diffusions. In order to do these diffusions while still protect ing the device, silicon dioxide (glass) is grown on the surfact of each wafer. Then, using a photolithographic process windows are cut through this oxide through which art diffused the " N " and " P " dopants. This step - oxidation prior to any diffusion - is the key to the Planar process This process will only work if the dopants used will no diffuse through the silicon dioxide coating. Thus, the dopant must be chosen carefully. The reason that silicon Plana transistors are possible is that there are dopants which wil not go through silicon dioxide.

It is possible to oxidize germanium and thus make : Planar germanium structure. However, the diffusants use go right through the germanium oxide as well as an! windowcut, so that germanium oxide Planar transistors ari not practicable.

The window cutting process is shown in figures 3 to 8 The steps are as follows:
(1) Wafer is oxidized - figure 3.
(2) A photosensitive material is applied to the top o the wafer. This material is called photo resist figure 4.
(3) a light pattern is projected on to the wafer to expost certain areas, leaving unexposed areas or "win'dows" -figure 5.
(4) The wafer is dipped in a developer which onls removes the unexposed photo-resist - figure 6
(5) The wafer is dipped in an etchant, primarily hydro fluoric acid which attacks only the now exposec silicon dioxide. It affects neither the exposed photo resist nor the silicon-figure 7.
(6) The wafer is then dipped into a solution (chromis acid) which washes away the remaining unexposec photo-resist leaving a window in the silicon dioxide through which dopants may pass - figure 8.

「RANSISTORS

By D. D. Myles, Fairchild Australia Pry. Ltd.

Each time a window is cut this same process is used. ste: The wafer has silicon dioxide on both sides after ch diffusion step. All the diffusions are done from one le. The back side is etched off in step 5 above.

In making Planar devices, each time a wafer comes out a furnace the entire wafer has silicon dioxide covering junctions. Towards the end of each diffusion step oxide grown over the diffusion windows. Thus the junctions e protected during each step. Figures 9 to 12 show the altiple diffusion-oxidation cycle involved for a doublefused device. Ncte: (1) that the multiple oxidations leave ips in the oxide. Oxide grows everwhere when it grows at , including the reverse side of the wafer. These steps n clearly be recognised under a microscope as apparently fferent colours, due to the refraction of light through the fferent thicknesses.

The first diffusion in Fairchild's process is the base fusion. After base diffusion, the emitter diffusion is accomished. To provide the correct polarities, doping densities d process control, different doping agents are used for e different regions. For the base of an NPN and the iitter of a PNP boron is used as the doping agent. For e base of a PNP and the emitter of an NPN phosphorus used.

At this point in the process most of the characteristics
the transistor will be determined. The factors which fect these characteristics are important and should be entioned.

First, some preliminary information is necessary:
(a) The process of diffusion is a dynamic one. When a wafer is exposed to diffusion temperatures (approx. 1000 deg. C) the doping agents will all diffuse from areas of high concentration (highly doped) toward areas of low concentration (lightly doped). Hence during the emitter diffusion, for example. the base-collector junctions will tend to "travel" further into the wafer.
(b) The speed at which a dopant moves is directly related to both concentration and temperature. The higher the temperature or concentration, the faster the dopants will move.
(c) Because there is only a fixed amount of dopant on a wafer or transistor, the farther away from the surface of the device the junction goes (deeper), the lower the concentration of dopant.
(d) A region of high dopant concentration has low resistance or resistivity. Low resistivity comes from the fact that large dopant concentrations lead to large concentrations of carriers (electrons or holes).
After the base is diffused the emitter-base junction ust tend to "catch up" with the collector-base junction provide a thin base, as shown in figure 13. The characistics of the transistor can be greatly influenced by the cation within the transistor of the base region.

Figure 14 shows a finished transistor die with the portant dimensions labelled:
$\mathrm{E}=$ depth of the emitter.
B $=$ depth of the base.
$\mathrm{T}=$ thickness of the base.
" T " is not independent of either " E " or "B." Because ! practical considerations it is much easier to make " T " nall (thin bases) when " B " is small (shallow base). In idition one has much better control of both "B" and "E" nitter and base depth when the doping densities are :latively large. A rule of thumb for best control is that ie emitter depth should be ${ }^{3}$ base depth.

Fig. 1
HIGH RESISTIVITY
 EPITAXIALLY GROWN SILICON LOW RESISTIVITY SUBSTRATE
Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Just PRESS the BUTTON, MAN
and you're in business at home!

There's a National Transistorised Intercom for every home use. Inexpensive, professional, bat-tery-operated units for all possible installations. DOORPHONE is the handiest device for any home. Model VL125 surface mounting and VL126 flush mounting with built-in two-tone chimes lets you speak to callers without going near the door. $\$ 45.00$.
UNIQUE STANDPHONES twin-matching ultra modern design. Exceptionally clear conversation. Free talking system. Model VL290-\$23.70 pair.
2, 3 OR 4 STATION. Simple masterselective fully transistorised units for either communication . . . connect rumpus room, garage, kitchen, bedroom, dining room, sunroom, etc. Models VN131 (1 master, 1 remote)$\$ 27.00$, VN132 (1 master, 2 remotes) - $\$ 39.50$, VN133 (1 master, 3 remotes)- $\$ 49.50$.

BUSINESS INTERCOM: A complete range (up to 100 station is available)-write for leaflet.

FREE Inter-home CIRCUIT

All NATIONAL Home Intercoms are available from electronic wholesalers. Fill in the coupon below for name of nearest wholesaler and if you require a free circuit to show how all Inter-home communication systems can be inter-connected, WRITE

TO HACO DISTRIBUTING AGENCIES PTY. LIMITED, 57/69 Anzac Parade, Kensington, N.S.W.

Your Name
Your Address.

INTERCOM S709

In addition to the emitter and base diffusions other iffusion steps are needed to provide the special characsristics of today's high performance devices.

PNP transistors pose a problem due to the tendency f the surface near the oxide in the collector region "to, invert"; that is, to change from " P " material to " N " laterial. An inversion layer of this type is called a channel. wo methods are used at Fairchild to eliminate this problem. he first involves a gallium diffusion across the whole urface of the chip. This process lowers the surface resistivity 0 that inversion will not occur. This process is limited , low voltage devices due to the fact that the actual reakdown voltage of the device is lowered.

The second method is used on higher voltage devices. involves a modification of the so-called "annular ring" rocess, illustrated in figure 15. At the same time as the mitter is diffused, n diffusion is made outside and around ie base area, extending all the way to the edge of the hip. In addition, a so-called EQR (equipotential ring) shield ontact is deposited during the metalising step, extending om this low resistivity surface diffusion over the silicon ioxide above the collector-base junction. These added steps ave the following results:
(a) The low resistivity surface diffusion terminates incipient inversion layers (channels). An annular ring not extending to the edge of the chip might not do this, as it could have crystalline defects which allow a channel to continue on to the other side.
(b) The EQR changes the electric field in the oxide from horizontal to predominantly vertical. A horizontal field (called a transverse field) can move ions horizontally through the transistor structure to make an incipient channel grow. The EQR minimises this effect. When the EQR is used, the gallium diffusion is not used.
Thus, with the surface diffusion terminating the channel, 'QR limiting ion movement, and the PLANAR II process liminating the ions, virtually every safeguard possible is rovided to ensure a reliable device.

Devices intended for high speed saturated switching zceive a further diffusion to reduce the lifetime of the arriers. Gold is diffused into the device from the reverse ide of the wafer. Reducing the lifetime lowers the storage me of the transistor. Storage time can be reduced by
factor of approximately 50 times using this method. In non-gold doped transistor the storage time is about 85 er cent of the total switching time. Gold daping thus aduces total switching times from approximately $1 u S$ to re low nanosecond region. Some undesirable side effects re introduced but, when saturated switching is the criteria, rese side effects are less important. The side effects are:
(a) Leakage (currents) are increased.
(b) Vce (sat) increases.
(c) hfe (the DC forward-emitter current gain) is reduced. Devices requiring high hfe and low leakage must get re opposite treatment from gold doping. Material must e diffused into the device which increases the lifetime. hus, a "gettering" is performed on these devices to raise fetime by lowering the recombination centres. This gettering ; done like gold diffusion from the reverse side. Suitable ettering agents are nickel and phosphorus.

Both the gold doping and gettering steps are performed fter the last diffusion (emitter diffusion, or gallium).

Once the transistor wafer is completely diffused, metal ontacts must be made to the active base and emitter zgions. Figure 16 illustrates the sequence for depositing luminium for this purpose.

Figure 16A shows a transistor with the oxide cuts or both the omitter and base metallising. The reverse-side ilioon dioxide has already been etched away during the tep that cuts the windows for the metallising. The wafers re placed in a bell jar which contains aluminium pellets. he jar is evacuated and the aluminium vaporised, depositig it on the complete surface of each wafer.

Figure 16B shows the device after the aluminium is eposited. Then, using similar masking and etching steps , those described above, the aluminium is removed from he surface of the wafer except in the places required for ase and emitter contacts, any metal-over-oxide bonding ads, or EQR rings.

Figure 16C depicts a wafer at this step. The wafers re then put in a furnace at approximately $600^{\circ} \mathrm{C}$ in rder to allow the aluminium into the surface. This

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

FOR GREATER CLARITY AND NATURAL MUSICAL REPRODUCTION OVER THE COMPLEEE SOUND SPECTRUM INSISI ON

 WHARFEDALE LOUDSPEAKERS

 WHARFEDALE LOUDSPEAKERS}

PST/4
A low cost tweeter for budget multiple speaker systems. Frequency response is $300 \cdot 15,000 \mathrm{~Hz}$., impedance $10 / 15$ ohms. The perfect partner for the Bronze 8 RS/DD cr Bronze 10 RS/DD.
8" BRONZE/RS/DD
Very effective in a 1 cu . ft . enclosure, the response of this low priced model is $50-20,000 \mathrm{~Hz}$. Impedance $10 / 15$ ohms. Handles 10 watts peak power.

10" BRONZE/RS/DD

A low priced wide range speaker with a frequency response of 35 $20,000 \mathrm{~Hz}$. and ideal for use in a small enclosure. Rated at 12 watts peak power. Roll surround and double diaphragm.

GOLDEN 10/RS/DD
Frequency response is $30-20,000$ Hz . and performance particularly satisfying even in small enclosures. Impedance $10 / 15$ ohms. Handles 16 watts peak power.

W 12/FRS

Handling 30 watts peak power, the W 12 /FRS is an ideal bass reproducer for multiple speaker systems. Frequency response is $30-4,000 \mathrm{~Hz}$. and a "Flexiprene" surround permits long cone excursions. Impedance: 15 ohms.

RS/12/DD

A wide range $12^{\prime \prime}$ loudspeaker
 designed to provide high fidelity in an enclosure as small as $2 \mathrm{cu} . \mathrm{ft}$. Frequency response is $25-17,000 \mathrm{~Hz}$. and power handling capacity is 30 watts peak. Impedance $12 / 15 \mathrm{chms}$.

W 15/RS

This 15" woofer handles 40 watts peak power and frequency response is $25-1,500$ Hz . Used with the Super 8 and a Super 3 (Crossover HS/400/3), a superlative three speaker system becomes available. Impedance of the W $15 / \mathrm{RS}$ is $12 / 15$ chms. Weight $13 \frac{1}{2}$ lbs.

Australian National Distributors:
Simon Gipauy Pity, Titc
Head Office: 28 Elizabeth Street, Melbourne, Vic. Tel. 63 8101*
Sydney Office: 22 Ridge Street, North Sydney, N.S.W. Tel. 923890

The finest sound reproducers in every class proudly carry the WHARFEDALE name . . . for design is advanced and WHARFEDALE sound is audibly superior. WHARFEDALE's exclusive roll surround permits extended cone excursions in small and airtight enclosures to provide effective bass response; high frequencies retain linearity due to WHARFEDALE's unique double diaphragm. Transient perform ance of WHARFEDALE loudspeakers is outstanding - clarity and attack are particularly obvious in wide range WHARFEDALE units. Ask for a free catalogue providing detailed specifications on the WHARFEDALE range when you visit your favourite audio store.

SUPER 8 RS/DD

 With roll surround and double diaphragm, this high quality $8^{\prime \prime}$ wide range speaker features an aluminium voice coil. Frequency response: 30 $20,000 \mathrm{~Hz}$. Ideal for small enclosures; rated at 12 watts peak power. mpedance $10 / 15$ ohms.

SUPER 10 RS/DD
A flux density of 16,000 oersteds gives the SUPER 10 higher sensitivity and outstanding transient performance; frequency response is $30 \cdot 20,000 \mathrm{~Hz}$. Used in a 2 cu. ft. enclosure excellent results are obtainable. Roll surround and double diaphr a g m. Impedarice
 10/15 ohms.

SUPER 12/RS/DD The ultimate in domestic high fidel. ity loudspeakers. Frequency response is $25 \cdot 20,000 \mathrm{~Hz}$., and the SUPER 12 is rated at 40 watts peak output. Flux density is 17,000 oersteds. Pole size: $1_{\frac{3}{3}}{ }^{\prime \prime}$. Impedance is 12/15 ohms.

IT'S WHARFEDALE QUALITY THAT COUNTS!

lloying process provides good adhesion and electrical conact between the aluminium and the surface. Without the lloy step the aluminium would readily peel off and lead ond pads would easily lift from the transistor surface. Ifter alloying, the wafers are lapped to final size from he reverse side. At this point in the process, devices which fill use the no-preform die attach have the gold backing pplied.

Once the wafer has thus been metallised, it is ready 3 be die sorted, cut up, and mounted. The die sorting is erformed with the wafer held rigid on a vacuum chuck. ach potential device is electrically probed, an ink dot larking the bad devices. Once die sorted, the wafer is counted on a plate face up. again held tightly by a vacuum huck. The wafers are scribed with a diamond point, and re then broken into dice.

The process of mounting the individual dice on to ıeir "headers" is as follows:
(1) The header assembly is brought up to temperature approximately $400^{\circ} \mathrm{C}$.
(2) The chip is placed in contact with the header. If reverse side gold is not used, a gold solder pellet or "preform" is placed on the header under the chip. The reverse-side gold applied to some devices eliminates the need for a solder preform.
(3) The solder preform or the reverse-side gold forms a eutectic bond between the chip and the header.
The next step is to attach leads to the mounted die, sing one of two main procedures. If thermocompression all bonding is used:
(1) The header carrying the die is raised to a tempenature slightly below the gold solder melting point $-350^{\circ} \mathrm{C}$.
(2) A gold bond is made to the "capillary" lead.
(3) The gold capillary wire is resistance welded to the terminal lead "post" by another operator. The device is at room temperature during the welding operation.
If aluminium ultrasonic bonding is used, an aluminium ,ire is ultrasonically bonded at the same work station oth to the die and to the terminal post. No heat is ivolved in an ultrasonic bond.

From here the devices are cleaned, baked, sealed, ested and shipped.

By far the most common method used for 100 per ent testing of transistors today is DC multi-parameter sw-duty cycle testing, using a short duration pulse (typially around 400 micro-seconds). This is to ensure that he device is not overheated or destroyed when measuring arameters. Equally important, no appreciable change in arameters occurs due to heating of the junctions at the onditions specified. This possible change in parameters must e considered when comparing results of tests obtained y methods using long duty cycle or steady-state conditions.

Single parameter testing is occasionally required for pecial types or for specific customer requirements. These lay be DC or dynamic tests and usually take about the ame time per unit as a multi-parameter tester, which can erform perhaps 20 tests in one second. Obviously for conomic reasons, variations to the basic specifications hould be avoided wherever possible.

Dynamic tests in particular usually take longer, as 1ost equipment designed for this purpose requires time , stabilise (particularly noise figure testers). In fact, speatability of test results on a multi-parameter basis is xtremely difficult and leaves some doubt as to their ultirate reliability. In general, Fairchild guarantees almost all ynamic parameters by the intrinsic properties of the device Geometry-dopant level, etc.) and the successful passing of he DC tests on a 100 per cent basis.

Additional tests of a peculiar nature could have a ramatic effect on yield, involving more expense to the ustomer. As more devices have to be tested, more time ; correspondingly taken, and the discard units may not hen be easily disposed of-if at all.

Maximum and minimum gain devices are somotimes equired and are difficult and time-consuming to find because If the processes in producing a given transistor for a given pplication. For example, when a certain application is etermined, a transistor is designed so that maximum yield or the device will be centred around the desired characeristics. The wafers so produced are electrically sorted into lasses to suit the published specifications written around

the device. When certain types are required, the specific class of dice is chosen to ensure production of finished devices with maximum yield to the type required. This means that devices on the fringes are comparatively rare and thus hard to find.

Test equipment, such as the Tektronix Curve Tracer, is extremely useful for tests of this nature and also for correlation to specification conditions or evaluation of transistors to other than specification conditions. Providing the points mentioned earlier about dissipation are observed, correlation to pulse test conditions is not difficult to make.

In conclusion, it should perhaps be noted that all the testing in the world does not make a device more reliable. Reliability must be inherent in the process and design, and this is the aim of the Fairchild Planar process.

Precision Control for Nuclear Accelerators

The new English Electric 120kV triple-gap thyratron, CX1171, is unique. With it, nuclear accelerators car be controlled more precisely, more predictably, than with any other device. The greater precision o accelerator operation that results is due to three important features of the tube: extremely low time jitter of about 1 ns , low anode delay time and triggering with a $2 \mu \mathrm{~s}, 500 \mathrm{~V}$ pulse. The CX1171 can be usec at high repetition rates. Two tubes in parallel will allow switching of even higher powers and longel pulses. Of rugged ceramic construction, the CX117.1 is deuterium filled and incorporates a reservoil operated from a separate heater supply. For further details please get in touch with:

This is how a computer draws MAN IN ACTION

The row of sketches above were drawn by a computer

 to illustrate the movements of airline pilots carrying out routine duties in flight. The principle would appear to show promise in all fields of time and motion study.Computers have been serving people bediently for years, solving their probsms, setting up their schedules, making leir reports, even keeping track of their ank accounts. Now, a Boeing comuter has been given one of the most xtraordinary human assignments of all - drawing animated sketches of man in ction.
Design engineers who put together airraft cockpits and controls must know ow a pilot will react physically to a articular arrangement of dials and inruments. Are emergency controls too ard to reach? Are certain instruments in re wrong place? Can movement in the ockpit be reduced by rearranging seats r controls?
Manufacturing a full-scale model or rockup of every contemplated cockpit esign to get these answers is expensive. laving a pilot run through simulated istrument checkout in each mockp would be time-consuming. So, beore investing time and effort in this ray, Boeing designers decided to let a omputer figure out whether a certainzed pilot could operate comfortably in le cockpit of a particular design. The omputer would show pilot "reach" disinces and movements with mathemacal precision.
Drawing the human figure in action 1 the cockpit was the next logical ex:nsion of these computer experiments. 'oeing's computer graphics organisation ook the anthromorphic dimensions of median pilot from Air Force data. If ou lined up all the pilots by height, om tall to short, and again by weight. ren by hat size and then by length f arm, the man in the middle or each ne would, in order, stand 5 feet, 9 inch ill, weigh 162 pounds, wear a size . $1 / 8$ hat and have a 34 -inch reach. This spresentative pilot was drawn in seven

By Wes Robinson

segments - the body below the waist, the torso, the head, the two upper arms and the two lower arms. Each segment was prepared for the computer with the
the figure, of course," said Bill Fetter. computer graphics supervisor. "With 20 or 40 movable segments, we could probably bend the little finger of an animated figure. However, our purpose here is to find out as much as we can with the aggregates of movement available to us from a seven-unit figure."

The computer draws each part of the body as an individual unit. A graphics designer dictates where each section of the body will join the other, thus dotermining to a large extent the figure's action.

Fetter predicted it will soon become possible to store complete combinations of movement in a computer memory and call them out as total "subsets" with only one command, such as "run." "walk" or "bend." The computer would respond by drawing the appropriate combination of bodily segments in the requested pose.

A cockpit to suit the tallest or the shortest pilot can be designed from the computer studies, as well as more comfortable aircraft seats, better leg rests and more convenient kitchen galleys. Space-

Following programmed instructions, the computer draws action sketches of typical movements made by pilots.
same dimensional preciseness used in craft designers find the computer sketches manufacturing parts for commercial jets. equally useful in determining instrument The result is a human figure that bends placement and cabin comfort for astroand twists with unusual realism, despite nauts. Not only that, someday even the fact that it is composed of only seven Mickey Mouse may use a computer to segments. help him in and out of animated situa-
"We could spend more time animating tions.

COLOUR TELEVISION FROM

> With colour television very much in the news at the moment, this account of how the Ampex VR-7000 portable video tape recorder was modified to record colour pictures makes interesting reading. The modified VTR is able to provide acceptable colour pictures for most non-broadcast uses such as educational, industrial and home applications.

By Joe Roizen (Ampex Corporation)
on magnetic tape has been practical since 1958 when the first compatible colour broadcast recorders went into service. These transverse studio machines use four heads which rotate at right angles to tape travel (figure 1). The machines also contain very complex circuitry and time-base correction devices. The circuits are necessary to achieve studio-quality N.T.S.C. playbacks that meet F.C.C. specifications for on-the-air transmission; such video tape recorders (VTRs) range in price from $\$ 40,000$ to $\$ 100,000$ in the U.S.A.

The development of inexpensive helical videotape recorders for monochrome industrial and home applications, coupled with the current interest in colour television has led to investigations into relatively simple, inexpensive ways to adapt these recorders for colour. The pilot-carrier principle has proved a suitable system. Modifications to a normal monochrome recorder (Ampex VR-7000) and a home colour receiver make it possible to record and play back colour programs with a fidelity approximating off-air home reception.

The N.T.S.C. colour signal is composed of "interleaved" monochrome and chrominance signals amplitudemodulated on an RF carrier. The But when colour is added, the

Recording colour television signals monochrome portion of the video rotating head displacements show u dircuit of the home receiver.
monochrome portion of the video rotating head displacements show u
signal requires only that the horizontal as constant changes in subcarric sync coming from tape have less than phase and the image looks as thoug 15% per sec. per sec. rate change for it has lost colour synchronisation. stable optional images. This is a fairly easy-to-meet requirement for modern videotape recorders with head-drum servos. The chrominance portion, however, has a subcarrier signal of approximately 3.58 MHz . The instantaneous phase of this subcarrier determines hue in the reproduced image. One cycle of the subcarrier (360°) has a $0.279 \mu \mathrm{~S}$ period, and a 10° error in sub-carrier phase will produce a noticeable hue shift. 10° represents only about 8 nS . Allowing for the accumulation of record and playback errors, a time base of better than 4 nS is needed to reproduce faithful colour pictures. Such an extremely fine time base is not easy to attain.
Any rotating mechanism is subject to undesirable movement due to mechanical and electrical eccentricities, dynamic imbalance, walking bearings, etc. The head-drum assembly in a video tape recorder will normally display such variations in angular velocity as a time-base displacement of the reproduced signal. A monochrome picture may exhibit slight jitter, which is usually masked by the flywheel effect of the horizon-

The composite colour signal use for recording in the VR-7000-A (th colour version of the VR-7000) is als fed to a burst separator which phasi locks a crystal oscillator running : the colour subcarrier frequency (se figure 3). The output of the cryst: oscillator is divided by 7 in a tune circuit that yields 511 KHz , as show in figure 4. The 511 KHz is the multiplexed at a 5 per cent level o to the FM signal applied to the rt cording head. The current throug the head then has a 5 per cent pilo carrier content. The level must be hig enough to be detectable in the play back circuits yet low enough to min mise interference visibility in th reproduced image.

In playback (figure 5) the 511 KH signal is recovered at the head pre amp output, and a bandpass filte isolates it from the FM signal carry ing the video information. Tw limiters amplify and clip the signal t a uniform level; the pulses now driv a Schmitt trigger whose square-wav output goes to a second bandpas filter centred at 3.58 MHz , the 7 tl harmonic of the 511 KHz pilot cat rier. The 3.58 MHz is amplified an fed out of the recorder to the chomin

These diagrams show the difference in principle between transverse scanning used in broadcast quality video tape recorders and the helical scanning used in industrial models.

TRANSVERSE RECORDER

FULL HELICAL RECORDER

Figure 2.

HELICAL RECORDER

ace demodulation circuits of the odified home receiver. The set's wn quadrature circuits form the 0° ad 90° signals to decode the colour formation.
Since the pilot-carrier signal is subct to the same time-base displaceent errors that the composite video gnal is experiencing, the time reitionship between the pilot carrier asired signal remains constant. Hence ie colour signal can be decoded with :asonable time-base accuracy. The ical oscillator in the colour receiver temporarily deactivated during VTR layback.
The signal system of the VR-7000-- (figure 6) must be able to handle bandwidth of at least 4.2 MHz to ot attenuate the colour sidebands. To liminate unwanted noise, spurious igh-frequency signals, etc., the input
filtered by a phase-linear 4.5 MHz Jw-pass filter network.
A fast-switching multivibrator-type rodulator converts the video signal , FM. The carrier and deviation equencies are somewhat elevated :om their monochrome counterparts , minimise intermodulation effects etween the FM signals and the highnergy colour subcarrier (figure 7). he modulator operates between .5 MHz at sync tip to 6.6 MHz at eak white. A rising pre-emphasis oing up to 14 dB at the colour subarrier improves signal-to-noise ratio nd differential gain and phase. The M signal goes to a head-driver amlifier which provides a constant-curint source to the recording head up , 15 MHz . A rotating transformer ith an 8-to-1 ratio transfers the amlifier output to the transducer. A 0 -micro-inch head gap is employed.
In playback (figure 8) a low-impednce preamp gives a flat frequency esponse. Aperture correction and qualisation are applied to the FM ignal before 50 dB of shunt limiters liminate variations in signal ampliudes.

The output of the limiter is a con-

Figure 3. The pilot carrier is manufactured from the 3.58 MHz reference oscillator signal during the recording process.
stant-amplitude FM signal. A pulsecount detector and a 4.2 MHz phaselinear low-pass filter convert the signal back to video and remove residual carrier and deviation components. The output amplifier feeds two 75 -ohm outputs, and the RF and IF stages of the monitor (receiver) must be bypassed to provide direct access to the video circuits.

A colour-kill circuit in the VR-7000A detects the presence of bursts on the input signal and activates the pilot carrier in the record mode. If no burst is present, the pilot carrier is shut off so that the recording will not contain the 511 KHz signal. Under certain background conditions, faint vertical lines can be seen in the playback image, due to interference from the pilot carrier. The level, however, is not high enough to be objectionable and with normal image conditions, is not noticeable.

The VR-7000-A colour VTR produces acceptable colour pictures for most non-broadcast uses, such as educational, industrial and home applications. (Reproduced by arrangement with "Radio-Electronics.")

COLOUR TV ON DISC

Another significant advance in colour television recording technique is the development by Ampex of its HS-100 disc recording system. This is a high band colour recording system capable of providing instant replay at normal speed, or in slow motion and stop. This is made possible by the use of rare metal discs with extremely long life, in place of the conventional magnetic tape. Up to 30 seconds of action in high band colour can be recorded and played back with the new Ampex system.

For replay of significant action, any part of the 30 -second recording may be cued for on-the-air use in four seconds. The system is also suitable for rapid low-cost production of 0 colour commercials and special effects material. Its capabilities include reverse action playback at normal or slow motion speeds and frame-byframe advance for animation or analysis of highlights. Any slowmotion speed down to stop frame can be chosen.

The HS-100 is the first model in a new class of rapid access video recording systems with the valuable capability for "instant replay" use in education, industry, medicine, government and other fields. Disc systems will be a useful complement to existing tape systems in those areas where fast access and variable playback speeds are more important than long playing time.

PHASE LOCKED $358-\mathrm{MHz}$ XTAL OSC OUTPUT

$511-\mathrm{kHz}$ OUTPUT of divider
Figure 4. Burst-to-pilot relationship

Figure 5. In playback, pilot produces burst.

Figure 6. The VR-7000-A in record mode.

VR-7000-A SIGNAL SPECTRUM FOR COLOR RECORDING

Figure 7. The colour recording bandwidth.

Figure 8. Playback function of VR-7000-A.

Mr Elms (right) and I.R.E.E. President Professor R. M. Huey inspect a model of a satellite receiving station at the convention display.

THE IMPACT OF SPACE

Presented at the Institution of Radio anc Electronics Engineers Convention, Sydney on May 23, 1967, by Mr J. C. Elms, Directo of the NASA Electronics Research Centre

Cambridge, Massachusetts, U.S.A.

Prior to the Soviet launching of Sputnik I, on October 4, 1957, our own space plans consisted only of the launching of scientific satellites as our contribution to the International Geophysical Year-the satellites were of a size later ridiculed by Khrushchev as "grapefruit satellites." The United States was startled and shocked when the Soviet Union not only put up the first earth satellite, but one which weighed 1841 b , considerably larger than anything we even contemplated. We accelerated our own program, but the Russians continued to orbit increasingly larger weights. At the time that NASA was organised in 1958 Russia had placed in orbit a satellite weighing almost $3,0001 \mathrm{l}$. Our best effort up to that point weighed less than 40.

During that year of 1958 , the United States tried to launch 13 satellites, but only five of them worked. Since that time, however, we began to have increasing success. By 1961, we had 54 successful flights, with five successes for each failure. Since 1963 our record of successful launches has been in the neighbourhood of 90%.

In those early years of the space age, we were limited in what we could do by the lack of launch vehicles capable of putting substantial payloads into space -and by the existing level of technology, as well as by inadequate knowledge of the space environment.

As progress was made on many fronts our understanding of the potential of space grew, and it became possible to raise our sights and identify more clearly longer-range goals. As you know, the Gemini program was successfully completed last autumn. During this program we put 20 men in space in 20 months. The program demonstrated rendezvous and docking and extra-vehicular activities of increasing difficulty. Three unmanned flights in the Apollo program demonstrated the performance of the uprated Saturn I launch vehicle, the Apollo heat shield, and the Apollo propulsion and navigation systems. The tracking station at Carnarvon played a most important part in the success of all these missions.

Two Surveyors have made successful soft landings on the moon and have sent back data of great importance. We have obtained Apollo landing site pic-
tures from each of our three Lunar Orbiters. The cameras in the Lunar Orbiter also took pictures of the earth while it was in orbit about 750 miles from the moon's surface. The Woomera Station and Tidbinbilla, each functioning as part of a sub-net devoted to working with the appropriate spacecraft, performed beautifully. They received the data which produced spectacular and valuable pictures. All three of these programs. Gemini, Surveyor and Lunar Orbiter, have provided us with information essential to the projected moon landing.
During the past year the Orroral Valley Station obtained scientific data from about 40 satellites which measured the earth's magnetic and gravity fields, the characteristics and details of various radiation in space atmospheric phenomenon, and other data which are helping us to understand better the environment which governs our planet. The Honeysuckle Creek Station is the newest member of the 16 -station network which was implemented to support the manned Apollo mission. Honeysuckle Creek, together with two similar stations located 120° apart around the earth, at Goldstone Lake, California, and at Madrid. Spain, will give continuous coverage of the Apollo spacecraft from the time it leaves orbit of the earth, out to the moon, and back. These stations are equipped with 85 ft -diameter dish antennas and provide tracking, communications and command.
They will receive communications from the astronauts when they are on the surface of the moon and will also receive scientific data from the moon emanating from experiment packages which the astronauts will leave on the surface of the moon. When the spacecraft returns and resumes earth orbit altitude, Honeysuckle Creek and its two sister facilities in California and Spain will return the communication responsibility back to the 11 network stations and two tracking ships which are equipped with 30 ft -diameter antennas for near-earth and re-entry support. The Australian Government has provided additional assistance by making available physicians to serve as medical monitors at the tracking stations during manned flights. In addition, a number of Australian airfields have been used as staging
area for recovery aircraft. These at some of the things for which I extend t you our thanks.

I am happy to say, however, that no we have jointly entered the era when the U.S. can give Australia more tha thanks-where we begin to pay you bac for your efforts with something mor substantive than words.

At Toowoomba you have a prim command and control station for th Application Technology Satellite (AT: series. This station provides us visibilil of the satellite at that critical momel when we position it in synchronous orb at an altitude of 22,300 miles. We has now reached a point in the space prt gram where we can think beyond sing purpose missions. The ATS carries variety of space applications experimen in communication, meteorology, navig: tion and air traffic control, as well : environmental measurement experiment

For instance, ATS I is permitting u through its spin scan camera, to phot, graph the cloud-cover over the Pacifi the eastern coast of Australia, and th western coast of North and Sout America. We have been receiving abol 20 cloud pictures a day over this are This information comes into our ow weather bureau and is combined wil other information such as ESSA satelli data and ground derived data. By pr cessing all these data, we can put t_{1} gether relatively long-range weather for casts and weather maps. Furthermor we can use the same satellite to ser these facts back to all the stations th are in line-of-sight of the satellite, it cluding, of course, Toowoomba.

At times it is difficult to contact ai craft flying over the wide reaches of th ocean because of the effects of varyir atmospheric conditions. Using the AT we have for the first time been able 1 establish experimentally continuous cry tal-clear two-way voice communicatiot between aircraft over the wide reach, of the Pacific and ground control station on either side. The patential for worl wide air traffic control systems is indet obvious. It is especially significant future supersonic transport operations.

In addition to being involved in th ATS weather program, Australia als receives directly from, U.S. satellite twice a day, weather information in $t h$

CONNOISSEUR CLASSIC

TURNTABLE

Incorporating two slow speed synchronous motors, the Classic features a lathe turned aluninium turntable. Speeds are 45 and steel, mirror finished-and soft $+3 ?$ rubber wheels disengage when \$33.50

CRAFTSMAN II TURNTABLE

Very popular overseas, the Craftsman II features two fixed speed and a full 12 in . latheturned non-ferrous turntable. This precision instrument employs an hysteresis synchronous inotor whicuter $0.1 \%^{\circ}$ and rumble- 50 dB at RIAA characteristic: when referat RIAA characteristics when refercopies of reviews. Encel price
\$49

CONNOISSEUR

CRAFTSMAN III TURNTABLE
Perfection in a precision 3 speed transeription turntable is the only way to describe the Craftsman 111 . Fitted with a $12^{\prime \prime}$ nonferrons lathe turned turntable and a hyseresis synchronous motor \dot{b} and a buitin illmminated stroboseope. Speed variation of Ciramophone., "made. ${ }^{\circ} \mathrm{Hi}-\mathrm{Fi}$ " News" or write for your own \$670
personal copy. Encel price

CONNOISSEUR TONE ARMS MODEL SAU-1
New stocks of this popular arm are once more available . . ask for copies of the reviews. Bearings are silicone grease damped and are single point pivot types to reduce is tandard Height is adjustable-finish is nickel chrome and unbreakable black nylon plastic
copies of reviews

NEW CONNOISSEUR TONE ARM -MODEL SAU-2
A completely new model in a slightly higher price bracket than the Model SAU-1 which has been so popular. Gimbal mountings set at $4.5 / 45$, autonatic bias compensator hydraulic lowering device. lightweight head shell. adjustable height. 0-6 grams precision stylus pressure for copies of reviews. U.K. © 0 price is $\$$ A29.42 . . Encel price $\$ 7.50$

CONNOISSEUR STEREO CARTRIDGE MODEL SCU-1

Regarded as the finest ceramic stereo cart ridge produced anywhere in the world, the Connosseur SCU-1 will load any normal amplifier or tape recorder. Tip mass is cmis-dyne, lateral compliance 12×10 (6 cms) cms-dyne, lateral compliance 12 x $10-6$ cms/ dyne. Sound qualities are exceptional-and for copies of reviews in the "Gramophone", and "Records \$10.80

NEW PLANET MG-300 PUBLIC ADDRESS AND GUITAR AMPLIFIER
Power output is 35 watts R.M.S. with parallel push-pull 6BQS's, frequency response is $30-15.000 \mathrm{~Hz}$. plus or minus 2 dB . Three inputs-two crystal or dynamic microphones at 5 mV : and an auxiliary input for crystal or ceramic pick-ups. tape recorder or tuner at 300 mV . Output impedance includes 8 , 16 and 250 ohms as well as a 70 V line Valve complement: $1 \times 12 A X 7$.
$1 \times 6 A V 6,1 \times 6 A Q 8,4 \times 6 \mathrm{x} 5$.
Encel price is only

STENTORIAN SHIPMENT ARRIVES!

A substantial shipment of Stentorian speakers has just arrived . . . compare Encel prices! HF 812
HF 816 ….. \$12.50
HF 816 $\$ 19.50$
$\$ 14.50$
HF 1012 $\$ 14.50$
HF 1016
HF 1016 $\$=1.50$
$\$ 29.50$
HF 1016 Mjr
Crossover networks:
CX 500, CX 1500, CX $3000 \ldots ~ a l l ~$
$\$ 6.70$ All prices include sales tax.
Because of trade agreements many prices cannot be advertised so we advise you to write to us for an EMQ an Encel Mail Quote, Please print your name and address in BLOCK L.ETTERS . . and, if you're writing for amplifier or tape recorder information, please be reasonably specific as our stock of these items is extremely wide. Help us to help you!

IMPROVE STANDARDS WHEN

RECORDING-DEMAGNETISE:
Two new tape head demagnetisers are now available. . the single probe is Encel priced at $\$ 3.50$ and the double probe only $\$ 3.00$. Recording heads may be demagnetised in a few seconds and quality of recordings tape enthusiasts.

INCOMPARABLE FERROGRAPH

 TAPE DECKS!The new model 6G Ferrograph four track decks - stereo of course - have now arrived at Encel Stereo Centres. Three speeds, three heads and three motors. All the advantages of a world class professional stereo recorder can now be yours for a modest outlay. As agents for Ferrograph, Encel Electronics price for this proven professional tape deck is only $\$ 198$ including sales
$\$ 198$ tax.

NEW JANSZEN SPEAKER SYSTEMS WITH ELECTROSTATIC ELEMENTS
The all new Janszen Z 600 speaker system is revolutionary in design and construction provides a magnificent "transparent" sound. Response is 30 to beyond $30,000 \mathrm{~Hz}$. The natural treble response results from the use of Series 130 Janszen hiddihgh range radiatorsed lectrostatic units with 176 push-pul sheathed conductors. The hass reproducer is the Janszen Model 350 B dynamic. Impedance is x olmis only. Fnce price is sims for the Zoon masterpiece. Finish is oiled wal- on masterpiece. Finish is oiled wal-
nut. Truly an audiophile's delight.

THE ENCEL CSM-40 M.F.B. STEREO AMPLIFIER!
The remarkable new Encel CSM-40 offers more features, more performance, more value similar units are usmally twice the Encel price. Output is over 15 watts RMS (over 3 . response is $20-40000 \mathrm{~Hz}$ input sensitivities respons low as 15 mV Loudness control rumble filter seratch filter separate bass and rumbe controls ape monitor and motional feedback control and circuitry sub. stantial grain-oriented output transformers ... all are standard on the Encel CSM-40. The baiance meter may be switched in and out of circuit . . the filaments of the pre-amplifier are DC . . the output of cartridges such as the ADC 10 E and 4 E will load the CSM-40 and provide excellent results. Above all, this stereo amplifier is most satisfying to sit and listen to . . . see and hear the CSM-40 at Encel Stereo Centres in Melbourne and Sydney. Mail orders will be care-packed and freighted anywhere. Encel price is
$\$ 129$

COMPLETE RANGE OF HIGH FIDELITY WHARFEDALE SPEAKERS

All models are now in stock. . Write for rade-in investment in whar old equipment can cost less than you thought possible!

THE NEW PLANET MG-1504 STEREO AMPLIFIER

This extremely well finished stereo amplifier is also a fine performer. ${ }^{\text {with }}$ a total power output of 15 watts (I.H.F.M.) and a frequency response of $30-20,000 \mathrm{~Hz}$ plus or minus 2 db . Speaker matching for 4 Ax or Valve coniplement $2 \times 12 \dot{A} \times 7$. 1 $6 A Q 8.1 \times 6 C A 4,2_{x} 6$ BQ Encel price is only

A NEW HIGH QUALITY TONE
ARM AT A LOW, LOW PRICE!
The new Encel-Nikka tone arm is a precision instrument and will track perfectly down to gram with suitable cartridges. The open front head shell accepts all standard $\frac{1}{2}$ " fitting cart-ridges-and the arm takes Ortoform and SME shells without modification. Miniature ball bearings are used throughout. An outrigger bias adjustment sets stylus pressure. Encel price is only $\$ 19$ ($£ 9 / 10 /-$). See the review in "Electronics Australia", p. 123, Oct. 1966.
$\$ 19$
FILM INDUSTRIES MICROPHONES
The Model M-\$A ribbon microphone is supplied as standard equipment with several prof:ssional recorders. $50-14,000 \mathrm{~Hz}$. re sponse, impediances available
are $50,{ }^{200}$ and 50 k ohms.
Nuw only

TAPE BULK ERASERS

Now aviilable
WAL bulk erasers! Spools may be wiped absolutely clean n only $\$ 24.50$

THE NEW COSMOS SW-30C STEREO AMPLIFIER

watts R.M.S. or 15 watts I.H.F.M. per channel. P.P. GBM8's. Wide frequency response.

Head Ofirice: 431 Bridge Rd, Richmond, Vic: Tel. 423762
 City Branch: 18 Bourke St, Melhourne Tel. 322672 Syiney Store: 257 clarence St, Sydhey. Tel 234563,294564 Ground Floor. 2SM Building

The Mullard preferred heatsink extrusions listed below are manufactured in Australia and offer design engineers "off the shelf" heatsinks for most power semi-conductor applications.

Type	Standard Lengths	Finish
35D	$2^{\prime \prime} 3^{\prime \prime} 4^{\prime \prime} 6^{\prime \prime}$	Anodised
$45 D$	$3^{\prime \prime} 4^{\prime \prime} 6^{\prime \prime}$	Anodised
55D	$4^{\prime \prime} 6^{\prime \prime} 8^{\prime \prime}$	Anodised
$65 D$	$4^{\prime \prime} 6^{\prime \prime} 8^{\prime \prime}$	Plain

Bulk material is available in $36^{\prime \prime}$ and $72^{\prime \prime}$ lengths. Non-standard lengths, subject to quotation, can be supplied in minimum quantities of 100 pieces. Further details are available from Mullard offices throughout the Commonwealth.

For use with lower power transistors and silicon diodes.

For use with high power transistors, thyristors and silicon diodes.

2

For use with medium power transistors, thyristors and silicon diodes.

For use with high power thyristors and silicon diodes under transient current conditions.
form of pictures showing cloud cover over Australia. The photographs are eceived by three automatic picture :ransmission (A.P.T.) stations in Meloourne, the University of Melbourne, and the W.A. Institute of Technology. I Inderstand that three more A.P.T. staions are currently being installed in Darwin, Perth and Newcastle. I hope that the increasing number of meteoroogical data which will become available will be as helpful to the Australian ecoromy as similar data have been to the J.S.A. For example, the U.S. Chamber f Commerce recently estimated that in ts first year of operation alone, weather :atellite forecasting has resulted in a aving of about $\$ 2 \frac{1}{2}$ thousand million.
Now, about our projected earth reources satellite program, particularly vith regard to how this program may e valuable to your country in the near uture in the important area of water esources management: It is my undertanding that modern irrigation programs vhich have been established in N.T. have iven indications that a tenfold increase n productivity can be achieved in both rop and livestock production by careul management of available water.)bviously it could be extremely imporant to your economy if you were able o locate additional water supply.
The experiments performed so far in ur aircraft program have been very ncouraging in this regard. Near-surface nderground water has already been deected by infrared-photography. Deeper nderground water can be located in ome cases using a combination of ptical, infrared and radar mapping echniques. In addition, sensors are vailable which can gather information n the density of vegetation, and on soil :mperature and moisture. They may be sed to distinguish a healthy crop from
diseased one and perhaps even point p the cause of crop diseases. Underrazed and over-grazed conditions can be etected and, therefore, corrected. The roductivity of the fishing industry may Iso be influenced by recording the lovement of plankton and other varibles affecting the migration of fishing rounds.
Unfortunately, it will be after 1970 hen the global earth resources satellite rogram will become operational. Meanhile, I hope interested Australians will isit the U.S.A.- to study our precurser ircraft earth sensor program-and to ive us any advice that they think might z helpful in the development of the perational satellite system.
Some of our critics in my country ave said that the space program diverts :ientific and technical personnel from eir normal occupations and goals, and
therefore, damaging to the remaining ctions of the economy. Most of us el, however, that it is quite the conary. We can say with increasing confence that the peculiar quality of space ience and technology provides a stimus and an accelerating force for joint ogress in a wide range of disciplinesitronomy, biology, geology, geodesy, athematics, meteorology, physics, and hers at their newest frontiers and, with e benefit of new tools, the rocket and le satellite.
Space technology is the practice of e established technical disciplines, inuding electronics, materials, structures, rel, propulsion, communications. data andling and power sources under exemely severe conditions. The oppornities for scientists and engineers in ir space program have obviously had

STC CONVENTION STAND

Typical of the many excellent displays erected by companies participating in the equipment exhibition during the I.R.E.E. Convention was the STC stand, which featured radio transmission, data systems and line transmission equipment, as well as a wide range of components. A focal point of interest in this display was a 1/50th scale model of the high power rotable HF log periodic aerial designed in Australia for long and medium range communications with fixed or moving stations.
a beneficial effect on universities in the U.S.A. I hope that Australian universities will have an increasing opportunity to participate in your space oriented activities as they develop.

Much has been said about the socalled race to the moon, involving Russia and the U.S.A. In the many discussions concerning the great expense involved, some of our critics forget that the lunar landing is not an end in itself but instead it is a focus for national effort. In this and other space programs, we are developing the tools and the minds and the strengths for future and greater enterprises. So also are the Russians; but I hope and believe that the space program can continue to be a substitute for the forcing element which was formerly provided only by great world wars-witness the development of the airplane and of nuclear energy as two examples.
Earlier I discussed the Apollo network - the unified S-band system in which Australia plays such an important part. It is interesting to note that an earlier NASA development, the communications satellite, now in its operational phase, will play an essential part in the Apollo development program. Furthermore it is an example of NASA's basic role in space. NASA is a research and development organisation, not an operational one. As the weather satellites have become operational they, like the communication satellites, have become the responsibility of another agency. Meanwhile NASA continues development of advanced systems to give the forecaster better tools such as multi-spectral imaging in Nimbus II.
Looking further into the future of weather satellites we can see the requirement for new technology in the area of sensors such as microwave radiometers and spectrometers as well as supercooled IR detectors; and in improved spacecraft equipment such as
long life three axis stabilisation; and in data storage, processing and transmission. Also basic research is needed on new approaches for remote sensing of the atmospheric parameters.

Although, I've , only mentioned the word "electronics" once. I've been talking about electronics a great deal. Almost one half of NASA's money is spent on electronics and data handling -over two thousand million dollars per year! When I talk about requirements for the future I am talking about requirements for electronics.

No new technology requirement, whether it be for more efficient communications systems, for more accurate stabilisation and control systems or for more sensitive instrumentation can overshadow the most basic requirement for electronics with a much longer assured lifetime. One of the biggest limitations to longer duration flights is the reliability of electronic components and system. The best way to increase reliability is to design longer life into the basic devices. I don't want to downgrade the importance of system design in general or of redundancy in particular, but if you want something to work for five years you should design it so that you have every reason to expect it to work five years. Then and only then should you add redundancy to assure it's doing so.

The same design improvement which will permit longer duration missions will assure safer ones. These same improvements will reduce program delays and launch failures and will increase the protability of mission success. Last, but by no means least, greatly increased reliability of electronics is an essential requirement to reduce the cost of both the development and operational phases of the space program. Only by so doing can the advances in science and technology now being achieved be completely exploited for the economic and sociologic benefit of man.

A NEWSEMICONDUCTOR SIMPLIFIESAC FULL-WAVE CONTROL
CIRCUITS ... REDUCES CIRCUIT SIZEAND COST

Now the same General Electric technological leadership that over the years has brought you the Silicon Controlled Rectifier, the Controlled Avalanche Rectifier, high-current silicon rectifiers and many other important improvements in power semiconductor designs makes possible TRIAC.
TRIAC is a new three-electrode AC semiconductor switch which is triggered into conduction in either direction by a gate signal. It's actually a power "integrated" circuit, basically related to the SCR.

TRIAC simplifies control of full-
wave AC power by reducing the number of power-handling components; by generally eliminating need for transient voltage suppression: and by reducing size and complexity of gate-control circuits.

Compare the two circuits below. Both show a full-wave AC static switch. The one on the left the more complex-uses multiple SCR's. The simpler circuit on the right uses a single TRIAC.

If you're interested in applications such as static power switching, temperature controls, lamp dimming or motor-speed controls.
you should look into TRIAC.
It's available now, ex stock, two current ratings ; 6 amps and 1 amps both at 400 volts.

For further information, see your G representative or write Australia General Electric Pty. Ltd., 103 Yo। Street, Sydney. N.S.W. - 29871 552 Lonsdale Street. Melbourn. Victoria - 678221.

This circuit can be simplified...

to this

STOP PRESS!
TRIAC RATED AT 15 AMPS NOW RELEASED!

Progress/s Our Most Important Product

 Technical Reviewt

AUTO DRIVER MAY PREVENT ROAD ACCIDENTS

With road deaths increasing each year, and more and more people being crippled in road accidents, anything which promises to contribute to road safety merits serious consideration by every road user. In this context, the news that a Japanese company has invented what they believe to be the first devices to keep drivers out of trouble by automatic means is of special interest.

Mr Densaburo Masuda is an elderly leagues - that relays "instructions" to okyo businessman with an uneasy onscience about a serious social probm in Japan: the motor car. Japan al:ady has nearly 10 million cars, of hich about one-seventh are registered 1 Tokyo, where 788 people died in road zcidents last year and another 58,454 ere injured. At every police station the revious day's toll is prominently dislayed. Masuda anticipated the menace 4 years ago when he sold his string f 20 English racehorses to finance a tivate dream - a research laboratory tat might make a serious contribution , road safety.
"Most traffic accidents" Masuda said, are caused by speeding or overloading."
few weeks ago his laboratory anounced its first big contribution, a sysm whereby the top speed of a vehicle
automatically kept below a predetertined figure. Very soon now he hopes , announce a technical solution to the roblem of the overloaded vehicle - in ie case of dump trucks and forklift ucks often overloaded three-fold in apan, he asserts.
The MEL automatic speed regulator, ; they call it, has been developed sintly by a mechanical engineer, Shigtu Kondo, of the Masuda Electric Labratory in Tokyo, and an electrical enineer, Minoru Moriya, of the Tsuken leotric Industrial Company in Sendai. heir idea is to impose a top speed mit upon the vehicle, beyond which ie vehicle is automatically slowed down, r braked if need be. At its simplest, is control is exercised "voluntarily" by ie driver, who merely pushes a button n his dashboard to select his own top peed (in Japan the limit is 80 kilometres n hour, but speeds of $40,50,60,80$ or $30 \mathrm{KM} /$ hour can be pre-selected).
But the real point of the MEL utomatic speed regulator, is not to ave it to the driver but to impose an ver-riding control from the pavement. foriya has developed a miniaturised ansmitter with a range of 300 metres - "the key to success," say his col
the vehicle. If the car enters a zone of restricted speed too fast, shortwave radio signals promptly close the throttle, and continue to override the driver's foot until the vehicle has slowed below the speed limit. A whole range of instruction can be relayed to the car in this way, so that it takes the appropriate action when approaching for example traffic lights, pedestrian crossings, no-passing signs, or icy road conditions. A simple extension of the scheme would allow tape-recorded instructions to warn the driver, audibly, of traffic signals and conditions ahead.
The heart of the MEL paging system's transmitter is a miniature oscillator called the Minifork developed by Tsuken Electric, which can hold its frequency to within four parts in 10,000 at room temperature (no frequency has yet been allotted for traffic control, of course). The idea is that the transmitter would be attached to or built into the traffic sign itself, at a cost the inventors believe of around $\$ 250$ a time. The receiver,

The dilemma of the driver who finds the traffic lights changing aspect as he approaches them at speed may have been eliminated by a system devised by the British Ministry of Transport's Road Laboratory scientists.

With this system, traffic lights will not normally change to amber in circumstances when a driver might have difficulty in stopping safely and comfortably at the stop-line. No extria signals are involved and there is no alteration to the normal three-second amber period.
The equipment consists of detectors which measure speed, placed about 500 feet from the stop-lines on the highspeed approaches, and computing devices which estimate the time that each vehicle will enter its critical section. When a
small enough to be fitted within, say, the thickness of the door, might be massproduced, along with the mechanical coupling that disengages the accelerator, for about $\$ 75$.
Mr Masuda's own white Cedric has been fitted for self-policing with the minimum system, and has completed 5000 KM without trouble. It is said to slow the car abruptly, almost with a jolt, when a person tries to exceed the speed pre-selected on its dashboard. There is no need for any modification of the engine, and there is no effect upon the performance of the engine. The system has been undergoing public trials on the Funabasni Circuit, a race track north of Tokyo. Patents have been granted in Japan, and are sought in Britain and seven other countries.
The MEL system, plainly, is still experimental; but it works. It remains to be engineered for mass-production. The big obstacle, however, is that any significant advantage could emerge only if the system were to be adopted officially, and applied compulsorily to all vehicles. To this end Masuda and his colleagues have high hopes of influencing the Transportation Ministry, whom they claim has smiled favourably upon their ideas.

At the same time Mr Masuda, thinking nostalgically of that string of English racehorses, has hopes that Japan and Britain might collaborate in solving mutual social problems, traffic among them. ("New Scientist,"'18/5/67.)

TRAFFIC LIGHTS THAT "THINK" AID U.K. DRIVERS

vehicle enters this critical section, the signal is held at green until the intersection has been negotiated, except when the green period has already been extended to the maximum time allowed.

After successful preliminary trials on the Kingston By-pass a prototype model has been constructed in association with Automatic Telephone and Electric Co. and Siemens and General Electric Railway Signal Co. Ltd. which is now under test. Equipment of this kind, which can be coupled to normal vehicle-actuated signal controllers, will be in production shortly.

The system and equipment are described in a Road Research Technical Paper (No. 74). It is available from H.M. Stationery Office.

AVAILABLE ALL ELECTRICAL TRADE SUPPLY HOUSES AND HARDWARE STORES THEFUL L GUARANTEE APRLIES WHENIRON IS USED WITH A NATONAL TRANSFORMER AUSTRALIAN \& OVERSEAS AGENTS: VICTORIA:
Wm. J. McLELLAN \& CO. PTY. LTD. THE CRESCENT, KINGSGROVE, N.S.W. 50-0111

A. E. E. CAPACITORS PTY. LTD. 202 BELL STREET, PRESTON. 44-0491

TASMANIA: W. P. MARTIN PTY. LTD.
202 Argyle Street, HOBART
S. AUSTRALIA: COLLETT \& CANT PTY. LTD

103 Halifax Street, ADELAIDE
N.Z.: H. W. CLARKE (N.Z.) LIMITED 42-46 Cable Street, WELLINGTON, C. 3
N.Z.: H. W. CLARKE (N.Z.) LIMITED 10 Teed St., New Market, AUCKLAND, S.E. 1
W. AUSTRALIA: I. W. HOLMAN \& CO.

249 James Street, PERTH
QUEENSLAND: K. H. DORE \& SONS
505.507 Boundary Street, BRISBANE

ALSO TOWNSVILLE AND ROCKHAMPTON

Wm. J. McLellan \& Co. Pty. Ltd.

INTELSAT III WILL COMPLETE WORLD-WIDE SATELLITE COVER

The transmission of live television pictures between Britin and Australia via a communications satellite in Novemer last year tocused public attention on what is, in fact. re second phase of a global satellite communications scheme lanned to be complete by 1968. Telephone, television and :leprinter signals will be carried. This global system is eing set up by the International Telecommunications Satelte Consortium (Intelsat), a partnership of 55 nations, and re second phase of the scheme is now under way. The rst phase of the project was the coming into service of the larly Bird synchronous satellite in 1965. Phase II was esigned to provide two additional synchronous satellites, ne over the Atlantic and one over the Pacific (figure 1). ach has the same channel capacity as Early Bird but ives about twice the radiated power and has a larger arvice area.

The satellite intended for the Pacific was launched in)etober, 196G, but the apogee motor failed to put it into ze required geo-stationary orbit 22,300 miles above the arth and the spacecraft is now travelling in an elliptical rbit. It was while this "rogue" satellite was temporarily bove the Indian Ocean that it was in a suitable position , allow the Britain-Australia television relav. While it was ver the Atlantic it enabled two-way telephone communiation to be established between the Cable and Wireless round station built by Marconi on Ascension Island and re American ground station at Andover, Main. In the atellite, the receiver operates in the band $6.285-6.405 \mathrm{GHz}$ nd the transmitter in the band $4.060-4.180 \mathrm{GHz}$.

A replacement for the "rogue" Pacific satellite was subequently launched-modifications having been made to the pogee motor design-and was followed shortly by the stlantic satellite. Meanwhile, Early Bird continues to
operate. and will be in use up to 1968, when the third phase, using Intelsat III satellites, will come into operation. (If Early Bird fails before 1968 it will be replaced.) The combined capacity of Early Bird and the new Atlantic satellite will allow trans-Atlantic television transmission without interruption of other communications.

Phase III will provide three new satellites, one above the Atlantic, one above the Pacific and one above the Indian Ocean. Each will have a capacity of 1,200 voice channels. Their positions are not yet known but the Atlantic satell.te will probably be further west than Intelsat II satellite shown in figure 1. A significant feature of this phase for the U.K. is that the Indian Ocean satellite will allow communication between Britain and Australia, using the U.K. Post Office's ground station at Goonhilly, Cornwall, and a ground station to be constructed by the Australian Overseas Telecommunications Commission. As can be seen from figure 1. Goonhilly and much of Australia are within the limits of the service area. These limits are described by points on the eath's surface from which the satellite appears to be just above the horizon (see top-left sketch in figure 1). More precisely they are points on the globe where the angle of elevation of the ground station's aerial bowl when directed at the satellite is 5 degrees (relative to 0 degrees, the horizon)an angle which Intelsat have agreed as the lowest economic one for adequate signal/noise ratio.

The capacity of the Intelsat III satellites will be taken up during the 1970s. In general the satellite scheme will be complementary to the existing coaxial-cable long-distance telephone network - satellite communications becoming relatively more economical with increasing distance. An important factor in the timing of the whole system is the U.S.A.'s Apollo space project for eventual landing of men

Fig. 1. Estimated service areas of Intelsat II Atlantic and Pacific satellites and probable service area of future Intelsat III Indian Ocean satellite. The Intelsat III Atlantic and Pacific satellites will have roughly similar service areas to those of the Intelsat II satellites but the Atlantic services area may be about 20 degrees further west.

us we invon. 1 nis whil require glodal telecommunication
nks between the yarius nks between the various radio stations tracking the jacecraft, and the Atlantic and Pacific satellites ill be needed by NASA to supplement existing cables nd HF radio systems. Ascension Island, mentioned arlier as an earth terminal station, is one of three places t which fixed Apollo tracking stations will be operating he other two being Carnarvon and Grand Canary Island). further six tracking stations will be mobile - on land r shiphorne. About half of the capacity of the two Intelsat is will be used for the Apollo project and the remainder ill be available for routine commercial communications.

The two Intelsat 11 satellites have been constructed by e American firm which built Earlv Bird (HS303)-Hughes ircraft Company. These Intelsat IIs are twice as large as arly Bird, have over twice the radiated power, serve a rger geographical area and unlike Early Bird, provide for ultiple-access working (meaning that a number of ground ations can work through a satellite simultaneously). The licrowave relay station of the craft consists basically of a :ceiver operating over the band 6.285 to 6.405 GHz , a equency changer which changes the received signals by 225 GHz and a transmitter radiating the frequency-changed gnals in the band 4.060 to 4.180 GHz . In the transmitter sur 6 W travelling-wave tubes are provided. One, two or rree of these in any combination may be turned on and perated in parallel, according to the power available from e solar-cell and nickel-cadmium battery power supplv (nomially 85 watts). Normally two or three TWTs will be in peration, even when the earth obscures the sun. These ansmitter output tubes feed a four-element biconical horn srial array, which has virtually constant gain across the ass-band, to give an ERP from the satellite of about 25 atts for multiple-carrier working or 35 watts for singlearrier working. Since the aerial array has a toroidal beam it untinually illuminates the service arc on the earth while the tellite is spiming on its own axis (the spacecraft being jin-stablised).

Within the 125 MHz bandwidth of the relay station. 240 vo-way voice channels or one television channel can be commodated. The cost of operating one two-way voice cannel is at present about $\$ 35,000$ p.a., but this is likely drop as satellite communications become established. transmission time delay of 270 ms in each direction is therent in the system, and this means that two such satelte "hops" used in tandem would make telephone converitions extremely difficult.

The oraft's telemetry system, for monitoring and conolling the satellites from the ground, is similar to that of arly Bird and comprises two encoders, two VHF transmitters which are turned on and off from the ground) and a radio zacon (which radiates continuously). Control of the Itellites - positional control through gas jet system and untrol of the radio svstem - is the resnonsibility of the ommunications Satellite Corporation (Comsat) in the S.A., which acts as manager of the whole scheme for itelsat. Commands are sent from Comsat's operations mntre in Washington, D.C.
The Intelsat III satellites are being constructed by the merican company TRW Systems, and six are on order. hese will have slightly greater transmitter power than that f Intelsat II but, because the aerial beam will not be an all-round" toroidal one but have all the radiated energy irected in a cone towards Earth, the ERP will be subantially greater - about 100 W in fact. This directional sam will be achieved by an "electronically despun" erial system which will counteract the effect of the stabilisaon spin of the satellite by cyclically switching the RF nergy to the aerial elements as the satellite rotates. The reater capacity of these satellites will be provided by the ider bandwidth of the microwave relay stations -500 MHz istead of Intelsat II's 125 MHz - the receiving band :ing 5.935 to 6.425 GHz and the transmitting band 3.700 , 4.200 GHz .

On the ground a number of stations are, of course, Iready operating through Early Bird. but many more are nder construction and projected. Those already built or 1 course of construction are: Andover (U.S.A.), Brewster lat (U.S.A.), Buitrago (Spain), Fucino (Italy), Goonhilly J.K.), lbaraki (Japan), Bill Village (Canada). Paumlu Iawaii), Pleumeur Bodou (France), and Raisting (Germany). Ithough primarily for use in the Apollo project, the followig stations will also be available for commercial communiations: Ascension Island (British), Grand Canary Island ipanish) and Carnarvon (Australia). In addition, there are

Figure 2. Earth satellite station designed by the A.E.I./G.E.C./Plessey consortium.
plans to build stations at Hong Kong, Bahrein (Arabian Gulf), Moorefield (U.S.A.), Moree (Australia), in the Caribbean, and second installations at Goonhilly and Andover. Countries with definite plans to build stations include Thailand and the Philippines, and further possible sites are Nigeria, Ethiopia, the Middle East, Chile, and East Africa.
It has been estimated that 80 to 100 new ground stations will be needed over the next few years. This, of course, represents considerable business for the manufacturers (each station costing $\$ 2.5 \mathrm{~m}$ or more), and on the strength of it a new company, World Satellite Terminals Ltd., has been set up in Britain to specialise in building and installing these stations. Formed as a consortium by A.E.I., G.E.C. and Plessey, W.S.T. have produced a standardised basic desion for a ground station and have tendered for the Hong Kong and second Goonhilly terminals. One feature of their design (figure 2) which uses an 85 ft Cassegrain nerial reflector system, is that the "pre-amplifier room" containing the parametric amplifier first stage of the receiver is mounted so that it does not move in elevation when the bowl is tilted. This allows the equipment in the room to be continuously accessible to the engineering staff while the station is operating. The aenial bowl, as in other designs, is made steerable to permit tracking of non-synchronous satellites, or of synchronous satellites with slight positional variation (when the orbit is not precisely over the equator), or to allow the station to operate with two different satellites at different times. Maximum rate of movemenit is 1 degree a second. The aerial has a beam width of 0.2 degrees and can be positioned with an accuracy of 0.03 degrees.

Most of the ground stations in use or being built have reflector bowts 85 ft in diameter. This is the minimum size necessary to satisfy a receiving-performance figure of merit recommended by Intelsat:-

$$
\frac{\text { Aerial gain }}{\text { System noise temperature in deg. } K} \text {. }
$$

expressed in decibels. In the W.S.T. station, for example the figure of merit achieved is 40.7 dB with 5 degrees aerial elevation at the reception frequency of 4 GHz . The basic problem is, of course, the strictly limited radiated power from the satellite and the irreducible noise level of the system (sky noise plus man-made radio interference plus receiving equipment noise). In practice this means that the aerial bowl should be 85 ft in diameter to collect sufficient RF energy from the satellite, the station should not operate with the aerial beam lower than 5 deg. elevation, as mentioned earlier and the system noise temperature must be brought down to 50 to 60 degrees K. ("Wireless World." February, 1967).

The UNIVERSITY High Impedance Vacuum Tube Voltmeter model MVA6 has been designed for utmost versatility and high stability coupled with minimum of controls and simplicity of operation.

The large "Easy to See" meter with clearly marked scales make University model MVAb a pleasure to use.

All University instruments are backed by a comprehensive Sales and Service department thus assuring complete satisfaction.

PRICE \$42.00 PLUS TAX. PACKING \& POST \$1.00

SPECIFICATIONS:

DC Volts:- (negative or positive) 0-1.5-5 - 15 - 50 - 150 - 500 - 1500 V DC input resistance 10 Megohm. H.V. Probe (HV.20) up to 30KV.

AC Volts:-
0-1.5-5 - 15 - 50 - 150 - 500 - 1500 V RMS
Frequency range 30 cps to 100 kcs .
Peak to Peak:
0-4-14-40-140-400-1400-4000 V P. P.
Ohms:-
$\mathrm{R} \times 10-100-1 \mathrm{k}-10 \mathrm{k}-100 \mathrm{k}-1 \mathrm{M}-10 \mathrm{M}$
($0.2 \Omega-1000 \mathrm{M} \Omega$)
DB:- Ref. level 1 mW in 600Ω line.

- 10 db to plus 65 db (7 Ranges)

Accuracy:一 $\pm 3 \%$ for DC Ranges
$\pm 5 \%$ for AC Ranges
Power Supply:-220 - 240 V AC 50 cps.
Battery:- $\quad 950$ Cell 1.5 Volt
Tube Compliment:-12AU7 - 6AL5
Dimensions:-5.5" x 9.5" $\times 6^{\prime \prime}$ (140 x $215 \times 152 \mathrm{~mm}$)
Weight:- $\quad 5.5 \mathrm{lbs} \quad(2.5 \mathrm{~kg}$.)

FEATURES:

Large, 3 colour, Easy to read scale Engraved Aluminium Front Label
Unbreakable front cover on meter
Printed Circuit
Rugged Steel Case finished in 2 tone grey Baked Enamel. Complete with - Test Leads, Instruction Book and Battery.

ACCESSORIES:

HV. 20 Probe:-To Measure D.C. Voltage up to 30KV Dimensions $9 z^{\prime \prime}$ (250 mm) Weight 5 oz . (140 gr .) Trade Price - $\$ 8.00$ plus Sales Tax
RF-22 Probe:-Crystal RF probe 20V Max . up to 60 mcs.

Dimensions $6 \neq$ " $(160 \mathrm{~mm})$ Weight 3 oz . (85 gr .)
Trade Price- $\$ 6.00$ plus Sales Tax
Leather Carrying Case:-
Trade Price- $\$ 6.00$ plus Sales Tax.

UNIVERSITY GRAHAM INSTRUMENTS Pty. Ldd., 106 BELMORE ROAD, RIVERWOOD, N.S.W. Telephones: 53-8758, 53-0644 (5 lines)
Telegrams and Cables: Raquip, Sydney.
W.A.: Atkins (W.A.) Ltd.,

894 Hay Street, Perth. W.A.
S.A.: George Procter,

52 Gawler Place, Adelaide, S.A.

Representatives:
QLD.: Keith Percy and Co. Pty. Ltd., Waterloo St., Newstead, Bris., Qld.

VICTORIA: EASTERN INSTRUMENT SERVICE Pty. Lid., 38 MILTON PARADE, MALVERN, VICTORIA. Ph. $20-1156$

TAS.: W. P. Martin and Company, 202 Argyle Street, Hobart, And 150 Wellington Street, Launceston.

SCIENTIFIC AND INDUSTRIAL NEWS

usstralia's World Weather Centre

Weather information of vital importance to Australia's imary industries, airlines, shipping, and others, will soon be ocessed by a new computer centre. The Commonwealth Bureau Meteorology will install the computing facility in Melbourne ing a large IBM computer complex costing about $\$ 4$ million. le new centre will be linked by a communication system with eteorological data sources and information users throughout istralia and overseas. It will play an important role in the orld Weather Watch, with the responsibilities of a World eather Centre, together with similar centres in Washington and oscow, exchanging global weather data and charts.

To help local weather forecasting, the computer will process intinuously data from nearly 1,000 stations supplying meteorolocal observations from Australia and the adjacent regions. With ese data, the centre will assist in issuing forecasts - including rrnings of weather conditions likely to be dangerous - plot zather charts, compile lists of selected observations, carry out atistical processing, and generally apply the latest principles data processing to the Bureau's main functions.

Electronic equipment in the centre will include two identical ocessors with high speed printers, and magnetic disc drives pable of storing and keeping up to date vast quantities of eather data. The peripheral equipment will also include magnetic pe units, visual display stations capable of retrieving and dis aying in seconds tabulated weather data. Graphic plotting uipment linked to the central processor will automatically plot sather charts showing the movement of weather patterns over ustralia and adjacent geographic areas.

The complete computing and communication system will not come operational for some time. It will be installed in two lases over a number of years, starting in mid-1968.

:lectronic telephone exchange

Europe's first regular electronic telephone exchange was sened at Ambergate in England recently. The British Post Office is placed further orders for similar exchanges but, at the same ne, has placed large orders for electromechanical crossbar juipment. For future projects, it has standardised on electronic changes up to 2,000 -line capacity, but will still depend on odern crossbar equipment for larger exchanges.

The exchange at Ambergate is not fully electronic in the nse that there are no moving parts. All control circuits are ectronic, but the mechanical crosspoint still depends on physical ovement for operation. Totally electronic exchanges with no oving parts have been tested under operating conditions in the nited States and Britain. However, in recent years there has :en a swing from total electronic switching to mechanical crosssint with physical movement.

Australia may not see the introduction of electronic exlanges for several years, but the Australian Post Office will refully evaluate reports on the performance of the Amberite exchange. There appears to be no reason why electronic :changes will not readily be integrated into the existing lephone network.

:nlarged University Computer Systems

Control Data Australia Pty. Ltd. has contracted to supply Iditional computer equipment to Monash, Sydney, and Western ustralian universities at a total cost of over $\$ 200,000$. The first : the equipment has already been delivered.

Electricians wiring the instrument pancl of a B206S twin-engined six to eight seater executive aircraft, manufactured by Beagle Aircraft, England. The fiftieth of this series will shortly be delivered to the Australian Royal Flying Doctor Service. The plane has 221 cubic feet of cabin space. It is claimed to have all-weather capability, a range of 1,500 miles, and a cruising speed of about 222 m.p.h.

The computer system at Monash is being doubled in capacity by the addition of an extra 16,384 words of central memory and two data channels. Two disk drives, each of 4 million characters, are also being added. The system installed at Sydney University is being enlarged with the addition of six telegraph terminal units. two disk drives each of 8 million characters and a C.R.T. display station. The University of Western Australia has also ordered two disk drives of 8 million characters to add to their computer.

Simpler computers now possible

Original research work carried out at Edinburgh University may lead to computers which are smaller, faster and much cheaper than existing types, according to a report in "The Scotsman." Professor W. E. J. Farvis, and a microelectronics team at the university have discovered a method of drastically simplifying the complex communications system within a computer. Basically, the principle of the Farvis team's work is a simple one, making use of basic bulk effects in semiconductor material - in this case a thin film of cadmium sulphide atoms evaporated on to a glass slide. A minute piece of this material should ultimately replace the complicated integrated circuits now widely used in computer circuitry.

Stable high electric field domains (clusters of electrons) are launched across the cadmium sulphide with the application of voltage. If a domain moving through the material encounters changes in conductivity due to doping or changes in cross-sectional area, the current through the slide also changes. By specifying the conduction paths in this way, it is possible to produce an output current with a waveform of almost any shape. The new concept has been named DOFIC (domain origirated functional integrated circuits).

Although the silicon integrated circuit is reliable and reasonably cheap, the fabrication process is fairly complicated. The advantage of the new method being developed at Edinburgh is its simplicity. For instance, the pulse generator is an integral part of a digital computer, but at the moment it takes as a minimum, two transistors, at least four resistors and three capacitors to make one pulse generator. With the DOFIC circuit, every time a domain sweeps across the DOFIC element it can generate a pulse corresponding to a notch cut into the profile. In fact a pulse code can be generated if more than one notch is cut into the element, giving an easy way to generate binary numbers. Because the domains travel through the element very quickly (at something like $10,000,000$ centimeters per second) an extremely short pulse is generated. Short pulses mean very much faster computers.

At the present stage of development of the system, the thin

SPECIFICATIONS

Size: 50 mm (2 in.)
Impedance : 8 or 16Ω
Frequency Range : $2,000 \sim 20.000 \mathrm{c}$:
Sensitivity: 100 dB
Power: 30 W max., 8 W nom.
Dimensions : $82 \times 82 \mathrm{~mm} .29 \mathrm{~mm}$ depth Magnet Weight: $193 \mathrm{~g}(6.81 \mathrm{oz})$. Ceramic Weight: 615 g ($13 / \mathrm{g}$ lbs)

Price $\$ 8.04$.
Plus Sales Tax \$1.68.

High Compliance woofers

FW-162

SPECIFICATIONS
Size: 160 mm ($61 / 2 \mathrm{in}$.) *Impedance: 8 or 16Ω
Resonant Frequency (f_{0}): $40 \sim 50 \mathrm{c} \mathrm{s}$
Frequency Range : $f_{1,} \sim 2,000 \mathrm{c}, \mathrm{s}$
Sensitivity: 97 dB
Power: 30 W max., 10 W nom Dimensions: $166 \times 166 \mathrm{~mm}$
81.6 mm depth

Magnet Weight: 500 g ($1: / \mathrm{b} \mathrm{lbs}$), Ceramic
Weight: $1,660 \mathrm{~g}\left(31 / k_{6} \mathrm{lbs}\right)$
Price $\$ 12.00$.
Plus Sales Tax $\mathbf{\$ 2 . 5 0}$.

FW-202

SPECIFICATIONS
Size: 200 mm (8 in.$)$
*impedance : 8 or 16Ω
Resonant Frequency (f_{0}): 30~40 c/s
Frequency Range: $f_{0} \sim 2,000 \mathrm{c} / \mathrm{s}$
Sensitivity: 98 dB
Power : 45 W max., 15 W nom.
Dimensions: $208 \times 208 \mathrm{~mm}$
90.8 mm depth

Magnet Weight: 830 g ($11 / / 1 / \mathrm{lds}$), Ceramic
Weight: $2,760 \mathrm{~g}$ ($61 / 16 \mathrm{lbs}$)
Prices $\mathbf{\$ 2 3 . 6 4}$.
Plus Sales Tax $\$ 4.93$.
Double-cone speakers

PW-65A

Size: 160 mm (6^{1} ́ in.)
Impedance: 8Ω
Resonant Frequency (f_{c}): $70 \sim 100 \mathrm{c} / \mathrm{s}$
Frequency Range: $f_{1,} \sim 15,000 \mathrm{c}$'s
Sensitivity : 97 dB
Power: 6 W max., 5 W nom.
Dimensions: $164.9 \mathrm{~mm}, 86.2 \mathrm{~mm}$ depth
Magnet Weight: 77.6 g (2.73 oz)
Weight: 476 g (1 掐 Ibs)
Price $\$ 6.60$.
Plus Sales Tax $\$ 1.35$.

High Compliance wide range speakers

FE-103

Size : 100 mm (4 in.)
*Impedance : 8 or 16Ω
Resonant Frequency (f_{0}): $65 \sim 95 \mathrm{c} / \mathrm{s}$
Frequency Range : $\mathfrak{f}_{0} \sim 18,000 \mathrm{c} / \mathrm{s}$
Sensitivity: 96 dB
Power: 5 W max., 3 W nom.
Dimensions: $105 \times 105 \mathrm{~mm}, 46.6 \mathrm{~mm}$ depth Magnet Weight : $193 \mathrm{~g}(6.81 \mathrm{oz})$, Ceramic Weight: 630 g ($13_{8}^{\prime} \mathrm{lDs}$)

FE-163

Size: 160 mm ($61 / 2 \mathrm{in}$.)
${ }^{*}$ Impedance : 8 or 16Ω
Resonant Frequency (f_{5}): $40 \sim 60 \mathrm{c} / \mathrm{s}$
Frequency Range: $\mathrm{f}_{0} \sim 20,000 \mathrm{c} / \mathrm{s}$
Sensitivity: 98 dB
Power: 10 W max., 5 W nom.
Dimensions: $166 \times 166 \mathrm{~mm}, 73.7 \mathrm{~mm}$ depth Magnet Weight: $398 \mathrm{~g}(14.04 \mathrm{oz})$, Ceramic Weight: $1,260 \mathrm{~g}(23 / 4 \mathrm{lbs})$

Coaxial speakers

FX-201

Prices $\$ 23.88$.
Size: 200 mm (8 in.) Plus Sales Tax $\$ 4.98$.
Impedance: 16Ω
Resonant Frequency (f_{1}): 45~75 c/s Frequency Range : $f_{1,} \sim 18,000 \mathrm{c} / \mathrm{s}$ Sensitivity: 101 dB
Power: 10 W max., 5 W nom
Dimensions: $206 \mathrm{~mm}, 137.5 \mathrm{~mm}$ depth
Magnet Weight : 240 g (8.46 oz)
Weight : $2,200 \mathrm{~g}$ ($47 / 8 \mathrm{lbs}$)
2-way network

Crossover Freq.: 2,500 or $3,500 \mathrm{c} / \mathrm{s}$ Impedance: 16Ω Attenuation: $6 \mathrm{~dB} / \mathrm{cct}$.
Dimensions: $63.1 \phi \mathrm{~mm}, 69 \mathrm{~mm}$ height Weight: $280 \mathrm{~g}(9.88 \mathrm{oz}$)

FHT- 1
2-way network

tweeter

FX-200 G2

with Price $\$ 21.60$.
Plus Sales Tax Size: $200 \mathrm{~mm}(8 \mathrm{in}$) $\quad \mathbf{\$ 4 . 5 0}$. *impedance : 16Ω
$\$ 4.50$.
Resonant Frequency (f_{0}): 45~75 c / s Frequency Range: $f_{0} \sim 18,000 \mathrm{c} / \mathrm{s}$ Sensitivity: 101 dB
Power: 10 W max 5 W nom.
Dimensions: 206 o'mm, 140.7 mm depth
Magnet Weight: $234 \mathrm{~g}(8.21 \mathrm{oz})$
Weight: $2,200 \mathrm{~g}(47 / 8 \mathrm{lds})$

2 or 3-way network

Crossover Freq.: 350 or $700 \mathrm{c} / \mathrm{s}, 2,500$ or $5,000 \mathrm{c} / \mathrm{s}$ Impedance: 8 or 16Ω
Attenuation: $6 \mathrm{~dB} / \mathrm{cct}$.
Dimensions : $83 \mathrm{H} \times 200 \mathrm{~W} \times 134 \mathrm{~mm}$ D Weight: $1,430 \mathrm{~g}$ ($31 / \mathrm{lbS}$)
Price $\mathbf{\$ 2 2 . 2 0}$.
Plus Sales Tax $\$ 4.63$.

FHT-1
 Price $\$ 11.04$.

Impedance: 16Ω Plus Sales Tax $\$ 2.30$.
Frequency Range: $2,500 \sim 16,000 \mathrm{c} / \mathrm{s}$
Sensitivity: 100 dB
Power: 10 W max., 5 W nom.
Dimensions: 110 mm height, 95 mm depth Weight • 330 g (11.75 oz)

Im of cadmium sulphide is "grown" in an evaporating plant. eated cadmium suiphiae at the bottom of the evaporating lamber is evaporated upwards and a stream of atoms is eposited on the glass slide within a heated chimney. To Jtain the shape of film required, the atoms are evaporated rough a mask cut to the required shape. The main problem p till now has been to deposit a perfect film on the slide - a roblem which resolves largely as one of temperature control it recently the Edinburgh team has perfected a process which vercomes this problem.

The DOFIC prooess is one of the more recent developments the study of bulk semiconductor mechanisms, and as such closely related to the techniques associated with the Gunn Iect.

こolour TV standards converter

A significant technological breakthrough has been achieved y B. B.C. engineers with the invention of a system for converag colour television signals from the American 525-line, 60Ild standards to the British and European 625-line, 50 -field andards. The B.B.C. has been concentrating considerable effort 1 this problem in an attempt to devise a system which will low direct exchange of programs between countries using either : these standards, particularly since the rather simpler systems reviously used for black and white program conversions was tt suitable for use with colour television. The Corporation as particularly keen to be in a position to make direct lecasts via satellite from the Olympic Games in Mexico next sar. Now the early solution of the problem allows the B.B.C , participate in trans-Atlantic exchange programs from the incepon of its colour service.

The problem of differing line standards on black and white levision had previously been solved in 1963, when the B.B.C. zveloped the first all-electronic converter, now in use throughout urove. This allows programs originating on systems using the 55-line, 50 -field standards to be converted for transmission ver the B.B.C. -1 network, which uses 405 -line, 50 -field standards. he problem is greater when converting from American standards, scause the differences are not only in the line standards at also in the field standards.

The optical methods of conversion previously used for 50 to) field conversion gave rise to picture degradation. While the

degree of degradation was not regarded as serious for black and white television, it was of a quite unacceptable order for colour television. The new all-electronic converter does not suffer from the defects of the optical system.

SEACOM installation

World-wide subscriber-to-subscriber dialling became more of a possibility with the opening of the SEACOM cable link with South-East Asia. The equipment installed in Sydney to meet the requirements of the SEACOM cable is an extension of the Intercontinental Telephone Exchange supplied by the Plessey Telecommunications Group for the COMPAC cable in 1963.

The equipment allows trunk operators throughout Australia to dial direct via the cable to other parts of the world. Only one manual operation is involved, a single dialling by the international operator originating the call.

Post-graduate training

A post-graduate course in process control is to be arranged by the Sydney University Chemical Engineering Association, on behalf of the university's Chemical Engineering Department. This will be a full-time course of one week's duration, from August 28 to September 1, consisting of intensive study in process control, ranging from fundamentals of systems analysis to the latest techniques employing digital and analogue computers. The course will include lectures, demonstrations, and tutorials. An enrolment fee of $\$ 50$ is payable, and a full set of lecture notes will be provided at no extra cost. Further details may be obtained from the Secretary, Department of Chemical Engineering, University of Sydney.

Marconidata for Czechoslovakia

The Ministry of Transport (Railways Research Department) in Czechoslovakia, has bought a Marconidata type H6010 data transmission system from the Marconi Company, of England, to be used in the course of a complete evaluation of the use of the telephone network for data transmission. The type H6010 is a new addition to the Marconidata range of mediumspeed data transmission equipment. By making a simple telephone call, an operator can transfer information from punched paper tape into a computer simply by pressing a button on the transmitting Marconidata terminal. No manual intervention is necessary at the receiving end.

Data can be transmitted at up to 50,000 characters per second, more than ten times faster than with a conventional telegraph or teleprinter circuit, and with a very high degree of protection from errors caused by noise and interference on the elephone curcuits. Less than one character in ten million will be transmitted incorrectly - roughly equivalent to printing the entire works of Shakespeare twice, with only one letter in error.

Seventy-six micro-electric computer systems, known as Field Artillery Computer Equipment (FACE), for frontline use by the Royal Artillery have been ordered from Elliot Space and Weapon Automation Ltd., England. The computer on which the system is based is in the left foreground of the view (above) inside a mobile command post in a tracked and armour-plated vehicle. Numerical data of target locations and meteorological information is put into the keyboard console of the equipment by an operator (left). The computer will calculate the range, bearing and angle of target, changes in weather data, the effect of gravity on shell flight, and correction for non-standard ammunition, all within the space of 12 seconds.

Profile of a great advance in 12" speaker design

Three new additions to the wide MSP HiFlux range. These new $12^{\prime \prime}$ models give magnificent transient response and are built for large power handling.

A unique process for treatment of the aluminium voice-coil former ensures better stability of voice coil shape under conditions of sustained high power. The cone rim treatment is another MSP feature which provides high damping and correct termination.

SPECIFICATION

TYPE No.	53348/12UA/15	52859/12TAC/ 15	52863/12TACX/ 15
Max. Power Handling	20 W.	10 W.	10 W.
Frequency Range	$45-6000 \mathrm{~Hz}$	$55-6000 \mathrm{~Hz}$	$55-12000 \mathrm{~Hz}$
Resonance	50 Hz	60 Hz	60 Hz
Magnet Material	Alnico V.	Barium Ferrite	Barium Ferrite
Flux Density	13,000 gauss	10500 gauss	10500 gauss
Total Flux	100,000 lines	45000 lines	45000 lines
V. C. Diameter	$1{ }^{3 / \prime}$	1 '	
Impedence	15 ohms	15 ohms	15 ohms
Mounting Hole Centres	$11^{3 \prime \prime}{ }^{\prime \prime}$ P.C.D.	11_{4}^{3} P.C.D.	$11 \frac{3}{4}$ P.C.D.
Maximum Depth	$4{ }^{3 \prime \prime}$	3s:19	35"

Special enclosure designs for M.S.P. Hi-Flux speakers are available on request.

ADELAIDE: Newton McLaren Ltd. Phone 51-0111. BRISBANE: Chandlers Ltd. Phone 31-0341. HOBART: Amalgamated Wireless (Australasia) Ltd. Phone 3-3836. LAUNCESION: Amalgamated Wireless (Australasia) Ltd. Phone 2-1804. MELBOURNE: Amalgamated Wireless (Australasia) Ltd. Phone 67-9161. Radio Parts Pty. Ltd. Phone 30-1251. J. H. Magrath \& Co. Pty. Ltd. 32-3731. PERTH: Amalgamated Wireless (Australasia) Ltd. Phone 21-3426. Atkins (W.A.) Ltd. Phone 21-0101. Carlyle \& Co. (1959) Pty. Ltd. Phone 21-9331. SYDNEY: Electronic Parts Pty. Ltd. Phone 533-1277. George Brown \& Co. Pty. Ltd. Phone 29-7031.

lore computers for Uni.

A new large computer complex has been talled in the Basser Computing Depart nt of the School of Physics, University Sydney. It consists of an IBM 7040 apled to an IBM 1401, and is the largest installed by the Department. It will be :d to train undergraduates in computer slications. Post graduate students will be e to use the computer for research prots. The addition of these computers to se already available in the Basser Coming Department will greatly increase the mber of student and research jobs the partment can handle each day.
The fast throughput of many different is on the IBM computers is largely due the "IBSYS Monitor System" with which two computers are equipped. This is program, or a series of instrucns, which controls a continuous stream jobs in different computer languages to 1 on the machines without interruption. The computer itself is a scientific/com:rcial machine, linked under control of : "Monitor" program. The central procesg unit of 7040 is suitable mainly for fast ndling of lengthy calculations; the 1401 the other hand edits and co-ordinates ding of alphabetic and numerical data 0 the system. Magnetic tapes can be ndled by either processor.

omputer training for boys

An ambitious progranı of instruction, igned to provide every one of its boy dents with a basic knowledge of comer operation and programming, has been :cessfully inaugurated at a high school Connecticut. U.S.A. To initiate the prom , the school has installed a PDP-8 entific digital computer supplied by Digital uipment Corporation, Maynard, Massaisetts (the U.S. principals of Digital uipment Australia Pty. Ltd., 89 Berry eet, North Sydney).
For the initial training program, 34 dents were selected, whose qualifications isisted of two years science and one year algebra and geometry. A week was en out of the normal teaching schedule 1 used to instruct the boys on computer idamentals, programming techniques and rtran computer language. At the end of ; time, the students were given a qualifyassignment. This consisted of writing program to find the values of X in the idratic equation

$$
A X^{2}+B X+C=0
$$

all values of $A . B$ and C. Within two eks, 28 of the 34 students had a workprognam.
Jsing the approach developed on the t group, over 90 per cent of the school 5 given a short computer course, adjusted
to the level of mathematical maturity of each group of students. Assignments, to be carried out on the computer, were given to all the science and mathematics classes. These assignments were problems that the teachers would normally have hesitated to use, because of the amount of time required.
With the program successfully initiated, boys are now working on programs dealing with topics such as electronic circuit analysis; a new triple precision floating point arithmetic package; and refraction of light in the atmosphere. Some of the boys are programming using MACRO-8, the PDP-8's symbolic assembly language. They are also using a desk-calculator simulator program called "Calculator" to do their homework and laboratory calculations.

Portable security system

Securiton Ltd., of Worcester Park, England, has added a new solid state portable alarm to its range of security systems. The system, designated "Bleep," comprises a lightweight transmitter housed in an unbreakable case and a receiver which accepts a coded message from the transmitter over a special radio link. The signal is released by a pushbutton switch on the transmitter. Upon receipt of the signal from the transmitter, the receiver actuates warning signals such as bells or a telephone call to police. Any number of "Bleep" transmitters can operate in close proximity since each uses a different coded frequency signal.

The transmitter is housed in a pocket sized case ($2 \frac{1}{2}$ in $\times 3 \frac{1}{3}$ in $\times 1 \mathrm{in}$) with the aerial integrated in the case. It operates on a mercury cell which will give power under normal use for more than one year. The receiver is powered by an external supply which normally comes from the batteries of a security control unit. The integral coding system protects completely against receiving a signal from sources other than its own transmitter, and it is impervious to any local interference such as electrical discharge, motors, etc.

Semiconductor patents

Patents covering two manufacturing techniques that counteract surface and bulk defects in semiconductor devices have been awarded to Motorola Inc. based on research work at the company's Semiconductor Products Division here.

Patent No. 3,302,076 "Semiconductor Device with Passivated Junction," relates to an improved design for passivated diodes and transistors whereby the electrode configuration for contacting the various conductivity regions of such devices acts to improve their surface states. It covers an invention commonly referred to as "field relief electrode" or "equipotential ring" technology.

This was followed by two patents on the annular process for manufacturing semiconductors, bringing to 54 the total number of semiconductor patents issued to Motorola within the past two years.

The issuance of these recent patents on the annular process and field relief electrodes is noteworthy because the two technologies are often merged for complementary effects. Field relief electrode and annular

NEW PRESIDENT FOR I.R.E.E.

Professor R. M. Huey has been elected President of Institution of Radio and Electronics Engineers, in ;cession to Mr A. de Courcy Browne. Professor Huey Associate Professor of Electrical Engineering at the tiversity of N.S.W. and has recently been appointed to biennial vacancy on the council of the University as resentative of the Faculty of Engineering. He has been senior member of the I.R.E.E. since 1963 and has served -iously on the Publications, Qualifications and Education ards of the Council. He is also a member of the National mmittee for Scientific Radio of the Australian Academy Science, and is Australian correspondent for Comssion VI of the International Union for Scientific Radio.

Major Mexican orders for telecommunications equipment have been won by Standard Telephones and Cables Pty. Ltd., against worldwide competition. The microwave radiolink equipment has been bought by Telephonos de Mexico principally to accommodate the increased tourist traffic and also as a preparation for next year's Olympic Games. It is the second big Mexican order awarded to STC. Last year, the company won an order for radio-link equipment valued at over $\$ 300,000$. The dotted lines on this map of Mexico indicate the routes of telephone links covered by orders received by STC. The latest contract is for the Mexico City-Acapulco and Mon-terrey-Nuevo Laredo links.
developments serve complementary roles in device manufacture by controlling surface and bulk defects.

Field relief electrodes are used broadly in the manufacture of semiconductor devices that have been manufactured with a protective, passivating oxide film over critical surfaces. Without the electrodes, unwanted surface states can have an unfavourable effect on the electrical characteristics of the devices particularly if they are not annular in structure.

Contamination and other effects of passivated surfaces can alter the resistivity and nature of the semiconductor material regions near the oxide-semiconductor interface, especially adjacent to the junctions. The use of field relief electrodes helps to eliminate this problem and consequently improves product performance and reliability.

Call for papers

The next triennial congress of the International Federation for Information Processing - IFIP Congress 68-will be held in Edinburgh, Scotland, from August 5 to 10, 1968. In addition to invited papers reviewing various aspects of computing, a large part of the program will be devoted to submitted papers. These will cover computer applications, hardware, software, and mathematics. An appeal for papers has been made and full details of the procedure for submitting papers can be obtained from IFIP Congress Office, 23 Dorset Square, London N.W.1, England.

LEVELL

PORTABLE INSTRUMENTS

TRANSISTOR DECADE OSCILLATOR TYPE TG66A

WIDE FREQUENCY RANGE
 0.2 Hz to 1.22 MHz

FREQUENCY SELECTION BY FOUR IN-LINE ADDITIVE DECADE CON. TROLS AND A FIFTH MULTIPLIER SWITCH.

MAINS OR BATTERY OPERATED

SPECIFICATIONS

PRICE: $\$ 457.50$ F.O.R. SYDNEY. Plus Tax af $12 \frac{1}{2} \%$
Fuliy detailed leaflets are available on the complete range of LEVELL portable instruments.

slour TV course

he Division of Post-Graduate Studies in University of New South Wales will ient a series of ten radio lectures designto give an introduction to the principles techniques of colour television. The ures will be broadcast weekly over Radio versity VL2UV, Newcastle, commencin August, 1967. The course covers the damentals of the NTSC, SECAM and L systems, the principles of colorimetry the chromaticity diagram, the nature shrominance signals, coding transmission.
course will also deal with colour leras, colour receivers, and testing and up procedures for colour systems.
he fee for the course is $\$ 6$, which may tax deductible. This covers the supply the printed notes, which are essential an understanding of the lectures. Closday for enrolments is 14th July, 1967. urther information on this course and er Radio University programs can be ained from Radio University, P.O. Box Kensington, Sydney.

nique recorder

nexpensive, highly precise $\mathrm{X}-\mathrm{Y}$ recorders ig $8 \frac{1}{2} x 11$ in chart paper, held in place permanent magnetism, are now available n the Varian Recorder Division, 611 isen Way, Palo Alto, California 94303. ignated the Series F-100, these rugged table-top recorders are highly accurate .25 per cent of full scale - and have ater range sensitivity (100 microvolts/ 1) than earlier models. Slewing speed Hz) is $15 \mathrm{in} /$ second, and repeatability is 3 per cent of full scale.
Jnique with this recorder is the method rolding down the chart paper. The platen a magnet-impregnated hard rubber pad,
the paper is printed on one side with

This compact sound level meter, manufactured by Laboratoire Electro-Acoustique of France, is designed to simulate an average human ear and to provide objective measurements of sound or complex noise levels within a range extending from close to the audibility threshold to above the pain threshold.
a magnetic ink pattern. Attraction between the two firmly maintains paper alignment and eliminates the need for electrostatic or vacuum hold-down devices commonly used on X-Y recorders. The paper position on the platen can be easily adjusted. No electronics are used for paper hold-down; thus, it is "fail-safe," requires no power, and is always "on."

First BC station in Qatar

Qatar, one of the wealthy oil States in the Arabian Gulf, is to establish its first broadcasting station. The project was put to international tender and won by The Marconi Company, who have already started to supply the equipment. A 100 KW shortwave transmitter will be used to provide coverage over a 1,200 miles radius and will be supplemented by a 10 KW medium wave transmitter for local broadcasting. Both transmitters, broadcasting identical programs, will be installed in a station a few miles outside Doha, the capital of Qatar. and will be connected to a studio in Doha itself. Marconi's anticipate that they will have the project completed in time for transmissions to begin early in 1968.

A new instrument, Type TT537, manufactured by Avo Ltd., Dover, England, determines the characteristics of transistors and diodes. It measures transistor hfe up to 1500 at a frequency of 1 KHz . Also leakage current, starting at luA, for PNP and NPN, low and medium power, germanium and silicon transistors. The collector voltage can be varied continuously up to 12 V . Collector current is measured in 10 ranges from $1 u A$ to $1 A$. The reverse characteristic of diodes can be determined up to 1000 V , the current being automatically limited. The forward characteristic is measured at 1.5 or 5 V with a maximum current of 500 mA .

Computerised water supply

For the past three years Britain's Water Research Association has been solving water distribution network problems for member authorities by using a British Aircraft Corporation Analogue Computer installed in the Association's physics department. The Birmingham City Council's Water Department have now taken a lead by placing an order for one of these computers for use in the first regional centre, at which the distribution networks of Birmingham and neighbouring authorities will be studied.

The BAC Analogue Computer provides an electronic "carbon copy" simulation of the actual water network, in which flow and pressures are read out in the units used by the Distribution Engineer. In this way, the experience of the engineers can be applied directly to the "carbon copy" model without the need for translation into special programs or "computer language."

This method of computation is rapidly gaining favour and water engineers from many overseas authorities are now going to the U.K. to study their networks on the BAC Water Network Analogue.

TURNTABLES

Sarrare

GARRARD AT60 Mark II, a further refinement of the AT60 model. New Cueing and Pause Control allows the pick-up arm to be lowered on to the record at any required position, eliminating possible damage to stylus or record; can also be raised while playing as a pause device. All models (private and professional) of the Garrard range are now on display at U.R.D.

Also all leading makes of equipment including:

QUAD	TANBERG
RADFORD	LEAK
TRIO	ROGERS
SONY	PIONEER
DUAL	THORENS
LABCRAFT	ALL BALANCE
S.M.E.	DECCA
SHURE	A.D.C.
ORTOFON	FERROGRAPH

FERROGRAPH
and others, together with a complete range of SCOTCH Magnetic Recording Tapes.
Plus Speaker Enclosures and Equipment Cabinets suitable for the above.
Price lists and descriptive literature available on request.

URD

UNITED RADIO DISTRIBUTORS PTY. LTD.

Shop 32, Ash Street Angel Arcade, Sydney Telephones: 28.3718, 28.3926 open saturday mornings

Sydney's leading High-Fidelity Specialists

Factors in the design of an FET Voltmeter

At first sight, design seems likely to involve little more than modification of the usual VTVM circuit. But it isn't that simple . . .

by Jamieson Rowe

Over the years the familiar "vacuum- takes of the order of $5-10$ minutes to tube voltmeter" or VTVM has become firmly established in electronics workshop and laboratory situations as the preferred instrument for making circuit voltage measurements. With an input impedance usually of the order of 10 megohms shunted by a few picofarads it causes little if any disturbance to the circuit under test, and is thus able to make valid and unambiguous measurements in places where other instruments would either upset circuit operation entirely or at least produce dubious readings.

In the majority of workshop and laboratory situations the usual VTVM has few limitations; however it has two characteristics which make it somewhat unsuited for use in "field" situations. The first of these is that it is almost invariably a mains-powered instrument, and cannot easily be taken to places remote from the power mains. The second characteristic is that it usually employs the thermionic valves in a DC amplifier cirçuit which commonlv
takes of the order of $5-10$ minutes to
stabilise after switch-on.
A battery-powered VTVM would probably be teasible, but would tend to be somewhat more complex than the mains type if reliability and accuracy were to be maintained. It would also tend to be rather inefficient, in common with other thermionic valve equipment operated from tatteries, and would accordingly require quite frequent battery replacement.

In any case, the use of a battery power supply would not obviate the warm-up problem, and this alone would detract from the usefulness of such an instrument in many "field" situations.
For some time now it has been possible to construct a "solid state" equivalent of the VTVM using junction transistors. However such instruments again tend to be rather complex if reliability and accuracy are to be maintained, both because junction transistors are inherently low input impedance devices and also because there are problems with leakage currents and their temperature dependence.

(b) GATE-SOURCE BIAS

(c) SOURCE-DRAIN CURRENT

Fig. I

(d) Characteristics

P.CHANNEL JFET

The structure of a double diffused P-channel JFET, together with diagrams used to explain its operation and a graph of the drain voltagedrain current characteristics.

It is true that there are fewer proble in this regard with silicon transist tnan with the germanium variety, a that with suitably chosen devices it possible to produce quite a satisfactc design. However, the complexity a cost tend to be rather high, so that appeal of such an instrument is largs in terms of the design exercise.

Whereas germanium and silic junction transistors are inherently rath unsuitable for use in this type circuit, the recently developed fiel effect transistor or "FET" is in theo quite well suited. It is a voltaॄ controlled device, in contrast with t current-controlled junction transist and, in addit.on, it has the very his inherent input resistance of a revers biased $\mathrm{P}-\mathrm{N}$ junction rather than t low resistance of a forward-biast junction. (We are talking here the junction FET or "JFET" rath than the insulated-gate IGFET or tl metal-oxide-semi conductor MOSFE but these have even higher input r sistance than the JFET.)
In principle the FET seems so we suited for use in an electronic vol meter that, at first sight, one is tempte to assume that development wou: consist of little more than substitutic of the new devices for the thermion valves in a standard VTVM circui Evidence that this is a common assump tion has been provided by a number (letters and telephone calls from reade in the period since economy JFET were released here some six month ago.

Unfortunately there is rather more t the design of an FET voltmeter than on might think from an initial consider tion and, in this article, the author wi attempt to explain some of the factor involved. It is hoped that this wi allow readers to understand why, as yet Electronics Australia has not been abl to publish an economically practica design.

While the discussion will be mainl: in general terms, some practical circui details will be given. However, it shoulc be emphasised at the outset that thi information is intended only for experi ment by those interested and shouls not be taken as the basis for a regula: constructional project.
It will probably be worthwhile tc begin with a brief description of the JFET and its operation, both as ar introduction to the device for those ye unacquainted with it and as a recapitulation for those not in this position. Readers who find the description giver here too cursory are referred to a more
etailed treatment which was published I the February 1967 issue (pp. 85-87).
The operation of the JFET is quite fferent from that of the normal juncon transistor. Basically it involves the introl or modulation of the conducnce of a relatively narrow strip of miconductor material called the chanal by a transverse electric field assoated with an adjacent electrode called le gate.
Figure 1(a) shows the basic structure a P-channel double diffused JFET, hich is the type of device currently railable at low cost. As may be seen consists of a lightly doped (therefore w conductivity) P-type channel with savily doped (and therefore high concativity) N-type gate regions either side
the narrow section. The ends of the lannel are normally called the "source" id "drain," while the two N-type gions are normally tied together and mply called the "gate."
In general terms the device operation pends upon the gate-channel P-N nctions being reverse-biased so that epletion regions extend into the lower nductivity channel and, by exclusion, untrol the portion of the channel availle to pass current between the source id gate. More specifically, there are oo independent but complementary senomena involved, and these are illusated by the diagrams of figures 1 (b) id 1(c).
If a fixed external bias is applied tween gate and channel as in (b), the spletion regions extend evenly throughit the channel. In contrast, if the gate
tied externally to the source and urce-drain current allowed to flow as
(c), the ohmic voltage drop set up
the channel produces a progressive ternal reverse-biasing of the junctions, lusing the depletion regions to extend revenly and "pinch" the narrow chanIl at the drain end.
In normal operation both mechanisms serate to produce a family of Ids-Vds arves, as shown in figure 1 (d). For any ven external gate-source bias Vgs the ain current first increases rapidly, then aches a "knee" after which it increases 1ly with substantial increase in Vds.
The "knee" of each curve corresponds , an equilibrium between the channel irrent flowing and the "pinching" of ie channel which tends to reduce ırrent. As the fixed bias Vgs is ineased, the "knee" occurs at lower and iwer drain voltages and currents, as lown by the dashed parabolic curve. heory shows that this curve corresponds
the locus of points where the drainte voltage Vdg is equal to a value p , termed the "pinch-off" voltage. Thus hen there is zero external gate bias 'gs $=0$) the "knee" occurs at $\mathrm{ds}=\mathrm{Vp}$; while if the external gate as is raised to equal $V p(V g s=V p)$, e device is effectively cut off because e pinch-off equilibrium is present even efore drain current flows.
The region of the characteristic curves , the left of the dashed parabola is ormally called the region of "triode" seration, while that to the right is illed the "pentode" region. In both ises the terms used draw attention to milarities between the section of the laracteristics concerned and those of ie appropriate thermionic valve type.
The JFET is normally operated in the sentode" region as it is here that the

At the top is the basic circuit of a modern electronic voltmeter using thermionic valves. Beneath it is a basic JFET voltmeter circuit derived from the valve circuit, used as a starting point for the discussion.
device is capable of the highest order of linear amplification.
Having briefly introduced the JFET and its operation, let us now consider how the device may be used in an electronic voltmeter.

Figure 2 shows the basic DC voltage measuring circuit of a modern thermionic valve voltmeter. As may be seen it consists essentially of a pair of cathode followers having the meter connected between their cathodes. The follower on the left is used as an impedance transformer coupling the input signal to the meter, while the follower on the right is used to maintain the negative side of the meter at a voltage level equal to that of the left-hand cathode with zero input. The right-hand follower may be regarded as a voltage divider whose division ratio and temperature coefficient are closely matched to those of the input follower.
The 10 K pot in the plate circuit is used to adjust for exact balance between the two followers. The action of the pot is thus that of a "zero" adjustment.
As the input cathode follower has an extremely high input resistance a simple voltage divider may be used to perform range multiplication, the total divider resistance being set at about-11M so that the loading effect of the instrument will be slight.
As a small amount of grid current is inevitable even with modern valves it is necessary to maintain an approximate correspondence between the resistance in the grid circuits of the two cathode followers if the balance between the two is to be maintained despite range switching. This is the purpose of the 4.7 M resistors in each grid circuit.

The power supply to the followers is arranged so that, for zero input, both grids are at a potential midway between the positive and negative suppiy rails. This ensures that the quiescent voltage drop of the valves is approximately equal to that of the cathode load resistors, a condition which tends to give the greatest available dynamic range and hence the highest linearity.

From a preliminary appraisal of the JFET and using the design philosophy behind the valve circuit as a guide, one is led fairly naturally to propose the circuit of figure 3 as the starting point for a JFET version.

As may be seen this involves little more that the substitution of a pair of JFETs for the original double triode, and twin 9 V batteries for the original centre-tapped power supply. The circuit now becomes a twin "source-follower."

The only other change is that the zero balance control has been placed in the source circuit rather than in the drain circuit. The reason for this is that from a consideration of the pentode-like JFET characteristics one would expect that a control in the drain circuit would have only a second-order effect upon the JFET currents. In contrast a control in the source oircuit seems likely to be somewhat more effective, in that it will give differential control over the selfbias developed by the devices in their source resistors.

Note that series gate resistors have been shown, corresponding to the resistors used in the valve circuit to maintain approximate zero balance despite gas current. The reason for retaining these resistors in the JFET circuit is that these
devices have an effective equivalent to

THINK SOLAFRTRON FOR FREQUENCY COUNTERS

The EM 1616 Frequency Counter is the latest addition to a wide range of Solartron instruments designed to meet every laboratory and industrial requirement for precision measurement. It continues the Solartron concept of high performance at minimum cost.
The EM 1616, a compact, medium-priced counter, provides a wide range of frequency and time measurements. Overall simplicity of operation, and extreme reliability, were key points in the Solartron design concept. It is equally suitable for laboratory, factory test or field service use. A 2 -hour rechargeable battery pack is available for field use.

The EM 1616 provides direct readings on all parameters to five significant figures I means of neon number tubes. Risk of misinterpretation is completely eliminat by the automatic positioning of the decimal point coupled with an illuminate annunciator display of measurement units. For most measurements only th controls need be adjusted - the mode selector and the range switch. A 'overflow' indicator warns when the capacity of the counter has been exceede This simplicity of operation and read-out makes the instrument particularly suitab for use by inexperienced operators.
A major feature of the EM 1616 is the absence of sensitivity controls or attenuator A sensitivity of 100 mV r.m.s. is provided but it is capable of accepting input signa up to 250 V r.m.s. without adjustment.

* Frequency $0-15 \mathrm{Mc} / \mathrm{s} ; 100 \mathrm{sec}$. maximum gate time.
* Period measurement of HF signals ; milli-nano-second (mnSec.) resolution. * Duration of 99,999 seconds, local or remote control. * Counting of random or repetitive events from 1 to 10^{10}. * Extreme simplicity of operation.

gas current in Igss, the leakage current of the gate-channel junctions.

Probably the most effective way of showing up any "first-order" problems which may be involved in a circuit is to attempt to set its quiescent operating conditions. Accordingly, having accepted the circuit of figure 3 as a likely starting point, our most profitable next move will be to consult the JFET data sheets with the intention of arriving at the appropriate circuit constants.
Reference to the data sheets of curtently available devices reveals almost immediately an important complication segarding their circuit behaviour and its rediction. The complication is that IFET parameters, like those of other semiconductor devices, are subject to ippreciable production spreads.
It is probably true to say that currently ivailable JFETs are, as a class, subject o somewhat wider spreads than other commonly used devices. Whether this is rue or not, however, it is inevitably the ase that the JFETs with the widest sarameter spreads are the very devices which originally prompted the present urticle-the recently released "economy" levices.

A good idea of the extent of the ipreads associated with economy JFETs nay be gained by reference to the ?N4360 device, which we have used in a lumber of recent Electronics Australia rojects. From an economy viewooint this device is particularly attracive in view of its unit cost of $\$ 1.05$ in mall quantities.
A parameter which plays a major part n determining the DC circuit behaviour ff a JFET is Idss, the drain-source curent with zero gate-source bias and a pecified drain-source supply voltage. On the curve of figure 1 (d) Idss correponds to the drain current at a point t on the $\mathrm{Vgs}=0$ curve; as may be seen t effectively determines the absolute caling of the vertical (Id) axis.
With the 2N4360 device this paraneter has a spread covering a full de:ade in current values - the maximum pecified value is 3 mA , while the maxinum is 30 mA .
The second main DC parameter of the FET is Vp, the nominal pinch-off voltge. This is defined in a number of ways, he simplest being that it is the reverse ;ate-source voltage necessary at a speciied drain-source supply voltage to reuce the drain-source current to a very ow (effectively zero) value. Because of he control characteristic of the JFET his parameter is closely related to the ransconductance of the device, as will re shown shortly.
The spread in Vp for the 2N4360 levice is not fully specified by the manuacturer, who quates only a nominal alue of 5.5 V and a maximum of 10 V . fowever from a consideration of the ransconductance figures given one can nake a fair estimate of the minimum $/ p$, and this works out to be a little beow 1V. Hence parameter Vp also has omething like a full decade of spread 'ariation.
Probably the most immediate implicaion of the wide spread in JFET paraneters is that the family of Ids-Vds urves of figure 1 (d) becomes of little ise for design, or at least for the purlose of setting up DC operating condiions. Because of the wide spread in oth Idss and Vp, there will be virtually
whole "family of families" describing he possible Ids-Vds characteristics of
the device; and because Idss and Vp it represents the transconductance. As are independent within certain limits, the slope is greatest at the point where the number of "member families" will Ids=Idss, this shows that the JFET has be extremely large.

The result is that we are forced to It is this maximum value for transseek a more concise method of present- conductance (gm) which is usually quoting the JFET behaviour, and one ed by the manufacturer, either as such which is capable of showing the perfor- or as the closely equivalent parameter mance of all individual devices within Yfs_{s} - the forward transadmittance at the spread limits. A characteristic which a specified signal frequency (usually satisfies these requirements is the IdsVgs "transfer" characteristic, which cor-

1 KHz).

If we substitute Idss for Id in equa-

Fig. 5
(a)
(b)
responds to the $\mathrm{Ip}-\mathrm{Vg}$ curve of a thermionic valve.
More specifically, as we are usually only interested in operating the JFET in the pentode region, we are accordingly interested only in its Ids-Vgs characteristic for this region. And it so happens that within this region of operation the transfer characteristics of the JFET can be deduced fairly easily from the data provided by the manufacturer.

Most JFETs currently available, including the 2 N 4360 , are fabricated by a diffusion process. For such devices the transfer characteristic very closely approximates a parabola, whose equation is
$\mathrm{Ids}=(\mathrm{Idss}+\mathrm{Igss}) \cdot\left(\frac{\mathrm{Vp}_{\mathrm{p}}-\mathrm{V}_{\mathrm{gs}}}{\mathrm{V}_{\mathrm{p}}}\right)^{2}-\mathrm{Igss} \ldots(1)$
Substitution of $\mathrm{Vgs}_{\mathrm{g}}=0$ into this equation shows that the characteristic crosses the vertical Id axis at a height corresponding to Idss. Similarly the point where it asymptotically meets the norizontal axis is found by substituting Ids $=0$, and this turns out to be where $\mathrm{Vgs}=\mathrm{Vp}$. Between these two points Ids varies closely as the square of the difference between Vgs and Vp.

The instantanecus slope of the transfer characteristic is a measure of the relation between Ids and Vgs - i.e.,
tion (1) and differentiate we get an expression representing the maximum transconductance. This turns out to be approximately

$$
\begin{equation*}
\mathrm{gmo}=\frac{-2 . \mathrm{Idss}}{\mathrm{Vp}} \tag{2}
\end{equation*}
$$

From this it can be seen how closely the performance of the JFET is dependent upon the two parameters Idss and Vp.
Put into words, the implication of expression (2) is that the tangent to the transfer characteristic at Id=Idss intersects the horizontal axis at $\mathrm{Vp} / 2$. This is indicated by the dashed line in figure 4(a), which also shows the other general properties of the JFET characteristics.
By rearranging expression (2) we can use it to find the V_{p} of a device, given its Idss and its maximum gm. Hence in the case of the 2 N 4360 , for which no minimum limit is quoted for Vp , we can obtain a close estimate by dividing twice the quoted minimum value of Idss (3 mA) by the quoted maximum value of gmo ($8 \mathrm{~mA} / \mathrm{V}$). This gives a lower limit for Vp of 0.75 V .
Similarly if the manufacturer had not supplied a maximum limit value for Vp . we could obtain a close estimate again, this time by dividing twice the maximum value of Idss (30 mA) by the auoted minimum value of gmo ($2 \mathrm{~mA} / \mathrm{V}$). This would give a maximum

Save it in the workshop and on service calls. TV picture tube testing can be fast, easy and positive with a Thomas Test Tube.

The Thomas Test Tube is lightweight. small in size and very easy to handle - it is plastic coated. implosion proofed and features a socket adaptor. The Tube comes complete in a metal frame with carrying handle and supporting feet.
Save time - ring your nearest Thomas distributor today.

THOMAS ELECTRONICS

) of 30 V whereas, in fact, the maxi1 m Vp is quoted as 10 V - which sgests tnat devices which combine a ,h Idss with a low gain are rejected m the production yield.
We have now reached a point where can draw transfer curves for a device resenting both its nominal behaviour d the limits of spread variation. This ormation has been drawn for the 14360 in figure 4(b).
The performance of a nominal or ogie" device is represented by the ddle curve, terminating at Idss $=$ nA and $\mathrm{Vp}=5.5 \mathrm{~V}$ and with a gmo approximately $4 \mathrm{~mA} / \mathrm{V}$. The two naining curves represent the limits of ead variation about this nominal ve, which variation may be seen to quite appreciable.
ro see how the transfer characteristic used to determine the operating point the source followers in our tentative ET voltmeter circuit, consider now circuit of figure 5(a). This represents basic DC circuit of each follower the zero input situation.
From this circuit it may be seen t there are three components of bias tage applied to the JFET gate-source ctrodes. These comprise the fixed forrd bias Vdd/2, a small additional ward bias produced by the gate leakcurrent Iess flowing in gate resistor and finally the reverse bias set up oss source resistor Rs as a result of source current (Id-Igss).
3ecause the third of these components ounts to negative feedback, the bias lied to the JFET by the circuit will be independent of the current drawn the device. Hence we must take both parameters of the JFET and the stants of the circuit simultaneous'y , account in order to determine the escent operating conditions.
n effect, what this means is that to I the JFET operating point we must re, by one means or another, two ultaneous equations: one describing relationship between Vgs and Id m the "point of view" of the JFET, the other describing the relation, between the same quantities from "point of view" of the circuit. Fairly iously. the quiescent operating conons will be those (presumably unique) ditions which satisfy both these ints of view" at once.
The second or "circuit" relationship be found fairly easily from a DC lysis of figure 5(a). From this we get an expression showing the three ponents of bias voltage Vgs:
$\mathrm{s}=(\mathrm{Id}-\mathrm{Igss}) \cdot \mathrm{Rs}-\mathrm{Igss} . \mathrm{Rg}-0.5 \mathrm{Vdd}$
earranging this, we then arrive at expression showing drain current Id a function of Vgs and the circuit stants:
$=\frac{\mathrm{Vgs}+\mathrm{Igss}(\mathrm{Rs}+\mathrm{Rg})+0.5 \mathrm{Vdd}}{\mathrm{Rs}}$.
Ve have already noted the first, or vice" relationship between Id and i; it is the device transfer characstic symbolised by expression (1). wever, it must be remembered that expression applies only to the pene region of JFET operation. Hence ore we can use the expression we st check that the gate-drain voltage lied to the device exceeds the value which marks the boundary between de and pentode operation.
n the present circuit this will be
approximately true providing Vdd/2 is equal to or greater than V p for the device concerned.

Although one might expect that we could now go ahead and simply solve expressions (1) and (4), this is not the case. As a result of the spread in device parameters we have in these expressions a larger number of variables than the two which we seek.

If there were no spread, the terms Idss, Igss and Vp would be constants for the particular device type concerned; however, because of spread these terms are, in fact, variables. All we know from the manufacturer's data is the nominal value and maximum and minimum limit va'ues of each.
more complex JFET circuits this can be important because for such circuits expression (4) will become quite large and unwieldy, and it may become quite difficult to make predictions of the limits by "educated inspection."
With a relatively simple circuit of the type with which we are at present concerned there exists an alternative method to the "direct calculation" approach, and the alternative method is not only more convenient but in certain respects more informative. It is a graphical method of solution, and is illustrated in figure 5 (b).

The rationale of this method is as follows: Because the gate current Igss is the reverse-bias saturation-leakage cur-

Fig. 6
MINIMUM LIMIT DEVICE
The problem of remainmg within the rent of the gate-channel P-N junctions, region of pentode operation also returns, it is essentially independent of gate-chanbecause with some devices the criterion nel voltage. As a result, two of the three that Vdd/2 be equal to or greater than components of the JFET gate-source bias V_{p} may not be satisfied. To satisfy this voltage may be regarded as constant, requirement for all devices of the given leaving only the feedback component as type it may therefore be necessary to a variable. reduce the fixed gate bias below Vdd/2.

One way of overcoming the main spread problem is to solve (1) and (4) three times, substituting for Idss, Igss and $V p$ in the first case the nominal device parameters, and in the second and third cases those limits of these parameters which by "educated inspection" will result in the limits of operating point variation.
As the circuit being considered is a relatively simple one, expressions (1) and (4) are sufficiently straightforward to allow the three solutions to be found in time-honoured "manual" fashion. Even so, the results will generally be somewhat more reliable and more accurate if the calculation can be performed using a digital computer.
With JFET circuits significantly more complex than this simple circuit, for this "direct calculation" determination of quiescent operating conditions to be practical at all it becomes virtually essential to use a digital computer to perform the calculations.
Use of a computer has the additional advantage that the machine can be programmed to actually find the limits of operating point variation rather than

Both the fixed bias components constitute forward bias, as they tend to make the JFET gate negative with respect to the source. Hence from expression (3) we can theorise that prior to the flow of channel current in the device, there will be a forward bias applied between gate and source whose magnitude will be given by
$\mathrm{Vgso}=0.5 \mathrm{Vdd}+\mathrm{Igss} .(\mathrm{Rg}+\mathrm{Rs})$
In fact, channel current does flow, and, as a result, the third or "feedback" bias component appears as a voltage drop across Rs. This component amounts to reverse bias, and will have a magnitude of Id.Rs.

Using this information we can draw on the same axes as our JFET transfer characteristic a "bias line" representing the relationship between Id and Vgs from the circuit viewpoint. The line will intersect the horizontal axis (where $\mathrm{Id}=0$) at a forward bias given by Vgso in (5), and will have a slope of $1 /$ Rs to describe the way in which Id must increase in order to produce the reverse biasing feedback voltage.

For convenience in drawing the bias line, the point where it intersects the

Ω PIONEER

 MODEL - SA400INTEGRATED STEREO AMPLIFIER

Sold only by selected Audio Centres throughout Australia

EXTRA-FNE SOUND AT BUDGEI PRICE

TUBES
DIODES
MUSIC POWER OUTPUT
POWER OUTPUT
HARMONIC DISTORTION
FREQUENCY RESPONSE SENSITIVITY
(For Rated Output)

TONE CONTROLS

12Ax7x3; 6BM8x4
SD-1Ax2; SE-05-01x2
30 Watts total
11 Watts per channel (RMS)
Less than 1% (at rated output)
± 1 DB from 30 to 20,000 CP.S
Magnetic Phono: 2.3MV
Ceramic Phone: 38MV
Tape Head: 1.5 MV , Tape Line Output
Playback (Monitor-in) 150MV
Auxiliary: 150MV
Bass: Boost 12DB, 14.5DB at 50 CPS
Treble: Boost 9DB, Cut 11DB at 10,000 CPS

Sole Australian Representative

ASTRONIC IMPORTS

(A division of Electronic Industries Limited)
622 NICHOLSON STREET, NORTH FITZROY, N.Z. (489-1911)

> also at

Sydney (31-6721), Brisbane (2-0271), Adelaide (23-4022), Perth (28-3111) and Hobart (2-2711).
ertical axis ($\mathrm{Vgs}=0$) can be found. his will be at a current ldo given by
$\mathrm{Ido}=\frac{0.5 \mathrm{Vdd}+\mathrm{Igss} \cdot(\mathrm{Rs}+\mathrm{Rg})}{\mathrm{Rs}}$.
It should be apparent that in drawing le bias line on the same axes as the FET transfer characteristic we produce composite diagram which shows both te "device" and "circuit" relationships etween Id and Vgs. Hence it follows lat in general the intersection of the ias line and the transfer characteristic presents the quiescent operating point f the circuit, as this point is unique in itisfying simultaneously the device and rcuit relationships.
Thus in figure 5(b) if we have a articular device whose transfer characristic is as shown by the dashed curve, e may in general conclude that its liescent operating poinit will be "A," ith a channel current of Idq and a ite-source voltage of Vgsq.
As with the calculation approach there
one important qualification to this nclusion. This is that the JFET characristic which we are using applies only
the pentode region of operation. ence it is important to check that the :vice is actually operating in this region fore it can safely be concluded that is in fact the operating point.
It was noted earlier that for operaon in the pentode region the drain-gate Itage of the device must be either pual to or greater than its $\mathbf{V p}$, and at in the present circuit this is satisfied proximately if Vdd/2 exceeds Vp. ore accurately the criterion is given

Vdd-Vgso $>\mathbf{V p}$

In other words, Vdd should be greater an ($\mathbf{V g s o}+\mathrm{Vp}$), and this can be asrtained quite easily from the horizont axis of the diagram.
For the purpose of introducing the aphical method of solution we have us far ignored the spread variation in vice parameters. In fact such variains will mean that in place of the igle device transfer characteristic of ure 5(b) we must consider a whole nge of possible characteristics, of nich only the limiting cases are defined. Hence for a practical circuit using a vice such as the 2 N 4360 considered rlier the diagram will in fact resemble ure 6. As in figure 4(b) there are now ree curves representing the nominal, aximum and minimum limiting values r the transfer characteristic of the ren device typo.
In attempting to use this diagram to sign a practical JFET voltmeter cirit the first step is to check that all vices will openate in the pentode reon of their characteristics. This means
effect that expression (7) must be lified even for those devices with the iximum $V p$ (i.e., 10 mA for the J4360).
Both from this point of view and from at of linearity it is desirable to use as th a Vdd as possible. With the type circuit being considered, however, ore is an upper limit on Vdd imposed the device voltage ratings. For the $[4360$ the ratings dictate that Vdd nnot with safety be increased above V.

Even if Vdd were made 20V, the fixed :ward bias component Vdd/2 alone uld only just permit pentode operan of all devices. Thus when the

additional bias due to Igss flowing to moderately high temperatures, where through Rg is taken into account, to- Igss will tend to become appreciable. gether with the fact that we originally proposed, a centre-taped 18 V supply, it can be seen that a centre-tapped supply is just not feasible if the circuit is to operate correctly with all devices.
Note that whereas in some applications it would be permissible to ignore the Igss-Rg component of forward bias, with an electronic voltmeter design this cannot be done. The gate resistor Rg will normally be a direct function of the voltmeter input resistance, and will thus tend to bo quite high; not only this but as an instrument the circuit would normally be expected to operate reliably up amine the diagram of figure 6 with a
of all devices, the next step is to ex-

In the light of the foregoing it would seem that the most practical supply arrangement would likely be three 6 V batteries in series, with the lower junction earthed. This would give a Vdd of 18 V and a forward gate bias of 6 V , figures which would probably ensure pentode operation of all 2 N 4360 devices up to about 50 degrees C. and with an input divider arranged to give an equivalent Rg of about 2.5 M .

Once Vdd and the fixed forward bias are selected to ensure pentode operation

VHF AM BASE STATION RADIO TELEPHONE for operation on 70.85 mcs. Remote control facilities available.

hF MARINE AND BASE STATION

RADIO TELEPHONE
Coverage 1.6 to 10 mcs . and includes broadcast band reception. Transistorised. 7 to 10 Cast band

VHF AM MOBILE RADIO TELEPHONE operation 70.85 mcs. 1 to

HF MOBILE RADIO TELEPHONE Multi-channel for Coverage 1.6 to 10 mas
 5 Channels.

V eston

HF MARINE
RADIO TELEPHONE
Single channel including aerial and aerial matching unit. Coverage 1.6 to 10 mcs .

* dealerships available in certain areas

You are invited to call, phone or post coupon for free information on radio telephone equipment. (Please X square opposite requirement.)

MAIL	\square	\square VHF, AM \& FM	\square
THIS MARINE			
COUPON	\square	HF LAND MOBILE \& BASE	\square AIRCRAFT

COUPON
Today
Name.
Address...
view to selection of a value for 1 source resistor Rs.

In order that the circuit shall be ci able of operation with all devices of 1 given type up to a reasonable tempe ture (say, 50 degrees C), no dev should be permitted to adopt operating point where its gate-sou junction is forward biased. Hence if po A on the diagram represents the fix zero-signal forward bias of 6 V , and represents the resulting Vgso at 50 , grees, the line B-D represents a lov limit on source resistor Rs. It can seen that this line corresponds to an which would cause a minimum lit device to adopt an operating point w $\mathrm{Vgs}=0$ at the given maximum te perature.

In the present circuit this means tl the minimum value which we can chor for Rs is approximately 2.7 K .

If the application of the circuit such that signals applied to the JF] gate are normally only positive-going, value of Rs can be made close to t minimum figure. With the voltme circuit being considered this would a practical arrangement; in fact, for go linearity it is desirable because the clo our operating point is to the zero-b situation the closer the working gm the device will approach the maximı value gmo.

On the other hand, with some apl cations it may be necessary to prov for inputs being both negat and positive-going. In such cases 1 values of Rs will have to be increas corresponding to a line such as BThe value would be chosen so that w the value of Vgso increased to corr pond to the maximum negative sigı excursion B-X crossed the vertical a at a point no higher than the po $\mathrm{Vgs}=0$ for the minimum limit devi

It might appear that in settling on value of 2.7 K as a suitable source sistor for our JFETs, we have fina arrived at our basic voltmeter circt However, this is unfortunately not t case. In fact, if we look a little clos at figure 6 we will find that to a certc extent our problems have only j started; it is only now that we are rea in a position to see some of the imp cations of the JFET parameter spres

Reference back to the proposed circ of figure 3 will show that the mel movement will be connected between t two sources. Hence in order that t meter can be zeroed for zero input, will be necessary to arrange that f zero input the two sources can brought to the same potential. Yet we consider the line B-D of figure we see that, for identical source resisto two randomly selected devices are like to have quiescent source voltages difft ing by as much as 6 V or so. For device near the minimum spread lin the operating point will be near "C with the source at approximately ear potential; while a device near the ma: mum limit will operate near "D," wi the source at about -6 V .

Fairly clearly, we are going to ne to adjust the source resistors individual if any pair of devices are to be operat with identical source voltages for t purpose of zero-setting. And if this to be done while also ensuring that t input transistor operates at maximu gain (i.e., near-zero bias), the tv resistors will need to be adjustable ov a range of about $10: 1$-from about 2.7
wn to about 270 ohms , the latter rresponding to the line $\mathrm{B}-\mathrm{E}$.
It is true that the zeroing control cirit of figure 3 can be arranged to perit this range of variation on a differen1 basis: thus RS1 and RS2 could be ade 270 ohms , and the zero pot 2.5 K . it further consideration of figure 6 will ow that a differential adjustment will t be satisfactory.
The reason for this is that differential justment of the two source resistors 11 only permit zero-setting; it will not sure that the input JFET will be
a practical design could be produced by freeing our design requirements from the restriction that the circuit should operate correctly with all samples of the broad-spread "economy" devices.

If information were available from the device manufacturers regarding the frequency distributions of device parameters within the published limits, it might be feasible to adopt a statistical approach. Such an approach could involve contraction of the effective spread range, working on the basis that a known high percentage of sample
meter circuit. Another two were not quite as well matched as the first pair, but would still perform quite satisfactorily. This may be a rather misleadingly fortuitous example, but it suggests that one might not have to purchase particularly large batches in order to obtain a useful pair of devices.

Figure 7 gives the circuit of a basic voltmeter which may be of interest as a starting point for experimentation. It has been designed to operate from a tapped 18 V supply with a pair of 2N4360 devices selected on the following basis:
(a) Id at $\mathrm{Vds}=-6 \mathrm{~V}$ and $\mathrm{Vgs}=0$ closely matched, and within the range $4-10 \mathrm{~mA}$.
(b) Vgs at $\mathrm{Vds}=-6 \mathrm{~V}$ and Id onetenth that in (a), again closely matched, and less than 7 V .
A convenient way to make the selection of devices for this and similar circuits is by using a simple test setup similar to that shown in figure 8. With the gate switch in the lower position, the current meter reads the zero bias channel current, while with the switch in the upper position the voltmeter reads the reverse bias necessary to reduce this current by a factor of 10 .

Source resistors R1 and R2 are selected on the basis of the current measured in the zero-bias test in (a) above, so that the JFETs are operated at close to the zero-bias point for maximum gain and linearity. To calculate the resistor values, simply divide the current reading obtained for the devices into 9 V . Hence for a pair of devices with a zero-bias current of $4 \mathrm{~mA}, \mathrm{R} 1$ and R2 will be 2.2 K , and so on.

It may be noted that a differential

Sole Australian Representative

D. R. Johnsion and Co. Pry. Ltd.

Suite 14, "Stanhill 33",
Queens Road, Melbourne.
TELEPHONE 26-1381-TELEGRAMS
8 CABLES "VIATON", MELBOURNE

PLANNING \& PROCUREMENT

Industry's participation in the manufacture and maintenance of complex Service equipment improves their technological capability, increases their production capacity and introduces modern overseas techniques and processes.
A consultative service to advise Industry on future trends in performance, standards of construction, and manufacturing plant requirements for Service equipment is maintained by the Department.

DEPARTMENT OF SUPPLY
GUIDED WEAPONS
AND ELECTRONICS SECTION
zero set control is used, as with match JFETs only minor adjustment will needed. The calibrate resistor value 200 ohms should also be sufficient cope with the reduced gain spread.

Although the basic measuring circl will normally have an input volta: sensitivity of less than 1 V , it is wise arrange the input divider as shown order that the input resistance can be useful 11 M while the JFET gate res tance remains below 2.5 M . The reasi for this is that for an appreciable pr portion of 2 N 4360 s the gate leaka current Igss will be sufficiently high produce rather serious temperature $\dot{\delta}$ pendent drift if the gate resistance ris bigher than about 3 M :

There is of course room for conside able experiment here; some may fin that with the particular devices obtain it is quite in order to make the lows range 1 V f.s. While still retaining ti full 11 M input resistance, while othe may elect to scale down the divid resistance to obtain satisfactory dn performance with almost any devic otherwise suitable.
The 100 K resistor and zener dio shown on the circuit are for protecti of the input JFET against overlo damage. Although with the divider c cuit shown they would not be essentia they would certainly become so if t divider were altered to allow the inp to be applied to the gate without attenu tion.
In closing this article brief mentia should perhaps be made of JFET al MOSFET voltmeter designs more con plex than the simple configuration whi has been discussed herein. As son readers will no doubt be aware, a smi number of such designs have been pu lished, many of them based upon a D feedback amplifer using an input JFE coupled to a silicon NPN bipolar tra sistor. (The configuration is rather sin lar to that used in the JFET prean design published in the May issue.)

Generally speaking, the situation wi such designs is even more complex tha with the simple circuit which we har been considering; a fact which shou scarcely be found surprising in view. the increased circuit complexity and $t \mid$ greater number of semiconductor d vices involved.

Many of the problems associated wi such desigus are very similar if n identical to those associated with it simple design. Not only this but as f as the author can judge, based upc both a fairly extensive computer-aid analysis and a survey of available d signs and papers, most of the problen which reappear in the more compls designs are even more serious than wil the simple case. And together with thes there are other problems arising fro the additional circuit complexity itsel

While the more complex desiens we: not given specific mention in the ma discussion, then. many of the problen discussed will be equally if not mol applicable to them than to the simp circuit which has been discussed.
The majority of these designs are it tended specifically for "one off" labor: tory applications where a very high il put sensitivity must be attained despi considerable circuit complication, incre sed cost and the need to select individu: devices. This being the case, the inch sion in the present article of a discussio of the additional problems associate with such designs was thought to t unwarranted.

KFEPING UP WITH semiconductors

Gunn Effect Devices

The Gunn Effect is a type of "bulk" miconductor oscillation phenomenon in hich a simple chip of a semiconductor laterial such as N-type gallium arsenide JaAs) is seen to oscillate in the micro'ave region when the DC potential imressed across it exceeds a critical value. was first observed in 1963 by J. B. runn of the IBM Corporation, although had earlier been predicted from theory. The effect has been studied rainly in GaAs, but is known to occur Iso in materials such as indium phoshide and arsenide, arsenic phosphate and admium telluride. In N-type GaAs mateial with a doping level producing 3 x 0^{15} carriers per cM^{3}, the effect occurs hen the applied field exceeds a thresold value of the order of $3 \mathrm{KV} / \mathrm{cM}$. Vith a typical device having an active rickness of approximately 10 microns $\left.10^{-0} \mathrm{M}\right)$ this corresponds to an applied oltage of the order of 3 V .
The theory of operation is as follows: n semiconductors such as GaAs there re two permissible energy bands availble to conduction electrons, with an nergy "gap" between them consisting of orbidden energy levels. The lower nergy band is that associated with norral high-mobility conduction, while in be higher energy band electrons have slatively lower mobility. A high electric eld can excite electrons from the lower nergy high mobility band and transfer hem to the higher energy band where hey have lower mobility.
As the voltage applied to a chip of he material is increased from zero, the urrent first increases linearly with voltge according to the material's normal ositive bulk resistance; the electrons are s yet in the lower energy band. Howver when the applied voltage reaches a ritical value the field intensity at some soint in the material will reach the value where electrons are transferred to the ligher energy low mobility band. The slace at which this occurs will be a region vhere the doping level is slightly reduced or some reason or another (doping varittions, lattice defects, etc.).
The effect of this local excitation is to sroduce a "dipole layer" or "domain," :onsisting of a carrier concentration ayer adjacent to a carrier depletion layer. Blectrons reaching the local excitation region from the negative electrode tend :o "bank up" on reaching the region, jecause they suddenly find themselves with reduced mobility; similarly at the positive side of the excitation region, slectrons are able to regain their higher nobility and leave the vicinity rapidly, leaving a local shortage.
Under the influence of the applied electric field the domain region drifts through the material towards the positive electrode at the average electron drift velocity. The domain drifts rather than extends, because the region as originally produced absorbs sufficient of the device

At left is a gallium arsenide Gunn device chip held inside the eye of an ordinary sewing needle to show its small size. At right is an experimental Gunn device $\delta \mathrm{GHz}$ Doppler speed measuring system which has been developed at Britain's Royal Radar Establishment in Worcester.
voltage drop to prevent further increase in the region thickness. For the same reason other regions are prevented from occurring, either at the place where the region nuoleates or elsewhere in the material.

Until the domain reaches the positive electrode of the device, the effective cur. rent passed b_{v} the material is less than that passed just before the domain region formed. Hence there is a negative resistance effect, because current has decreased with the increase in applied voltage which was responsibie for the production of the domain.

When the domain reaches the positive electrode, it disappears. The "bunch" of electrons in the concentration layer leave the material and the current momentarily rises. However, with the domain gone the applied field returns to its form, and almost immediately a new domain nucleates to repeat the cycle of events.

As each domain reaches the positive electrode the device passes a spurt of current; and because the domain repetition rate is governed by the time taken by a domain to drift from the point of nucleation to the positive electrode, reducing the thickness of the device permits the repetition rate to be made extremely high. To date Gumn Effect devices have been made to oscillate as high as 25 $30 \mathrm{GHz}\left(1 \mathrm{GHz}=10^{\circ} \mathrm{Hz}\right)$.

From the foregoing it may be seen that the operation of the Gunn Effect device is rather similar to that of a Klystron valve, in that operation depends upon the dime taken by "bunches" of electrons to travel through the device. Note, however, that with the Gunn device the effective transit distance (and hence the transit time) is not a direct function of the actual device thickness, but is actually a function of the distance between the point of nucleation and the positive electrode.
This has produced a number of problems, not the least of which is that as yet it has proved extremely difficult to design a device to oscillate at a given frequency. Similarly it has been found rather difficult to tune Gunn devices over a practical frequency range.

Research is currently being made to find new techniques for solving these problems, with some researchers seeking ways to get tighter control over the purity and doping of the semi-conductor, while others are examining new device structures and tuning arrangements. Research is also being carried out into bulk semiconductor effects other than that discovered by Gunn; for example at Bell Laboratories they are currently examining devices which operate in a so-called "limited space-charge accumulation" (LSA) mode.

There is great expectation that bulk effeat devices such as the Gunn device will permit many worthwhile advances in microwave techniques and applications. Already there is talk of "knapsack" TV link relays and small radar equipments the size of a hand torch.

For those interested in reading further, there are articles on Gunn and associated devices in Electronics (February 6, 1967, p. 127, and March 6, 1967, p. 134) and in Plessey Electronics (No. 1, November 1966, p. 15). (J.R.)

From the front and from underneath, the 60 watt amplifier looks little different from the 40-watt version featured last month. Note the more elaborate input system.

Guitar Amplifier - 60W Version

Following the presentation, last month, of a basic 40 watt guitar amplifier, we here give details of a more elaborate 60 watt version. Included in this latest design are specially "doctored" input facilities, having fixed amounts of bass and treble boost, and an optional "extra treble" circuit.

By Anthony Leo

In presenting the higher-powered ver- handle it. Obviously enough, it would sion, we would stress that the rating is be quite unrealistic to feed it into a genuine: It will deliver to the loud- system rated for, say, 20 watts and speaker system an actual output of 60 expect from it any kind of performance watts "undistorted." If operated under or durability. Any guitarist who aspires overload conditions for maximum sonic to use a 60 -watt amplifier should be impact, as often happens with guitar thinking in terms of multiple and/or amplifiers, it will deliver more power than this again.

The availability of audio power of in an adequate (and probably ponderthis order automatically invokes the for bass guitars or even ordinary guitars problem of providing loudspeakers to played so as to stress the lower register.

We may be able to say somethin about loudspeakers in a later issue bu for the time being, we can simply poir up the need.

But why 60 watts - a figure we above that provided in the average eles tronic organ?
To some degree, there is a tendenc amongst today's guitarists to regar high-powered amplifiers-and loudspeal ers to match-as status symbols. Wh: if they have to be transported i a large car and trundled in on castor: It's all part of the deal!
However, there is another side to i in that guitar-group audiences aren exactly noted for their silent attentio: and the high power may well be nece sary on occasions to ride over the con peting ambient. But, whatever the m tive, this 60 -watt version should col with just about any likely situatio

Over and above the provision higher power output, on which we sha make further comment later in tl

rticle, we have also provided a more laborate input circuit, with three jacks idividually compensated to favour lead, yythm and bass guitars. The internal ircuitry is such that there is a minimum f interaction between these input chanels. If desired, two or even three uitars may bs plugged in simultanously and adjustment of the controls n one guitar will not significantly ffect the balance from the others. In making such provision, we are not seking to contradict what is an accepted rinciple in guitar circles. Undoubtedly, le best presentation is obtained when le instruments operate through separate mplifiers and loudspeakers, each indeendently set up for optimum results. he total available power is greater and itermodulation is avoided, particularly overstressed loudspeaker systems.
Provision of multiple, frequencympensated inputs in our new amplifier arves a double purpose, however:

1. It makes it eminently suitable for ay role, since selection of the proper iput reinforces the action of the tone ontrols in the desired direction.
2. If the amplifier is to be used by core than one guitar, selection of the ppropriate inputs provides an initial equency differential, thereby simplifyig the task of finding a suitable comon setting for the major controls. A rhythm guitar is usually played ith the amplifier set for somewhere stween "flat" and modest bass/treble rost, depending somewhat on the play; the instrument and the music. Acrdingly, the input for rhythm accomaniment is "flat," the final balance sing subject only to the amplifie tone ontrols and, of course, the tone controls n the guitar itself.
For lead guitar, more treble boost is ormally desired and, accordingly, the put network for lead guitar provides a additional 6 dB boost at 2 KHz . With le treble control at maximum, someling over 16 dB of treble boost is availble at 5 KHz , which should meet all it extreme requirements.
For bass work, the bass input etwork provides an extra 8 dB boost 100 HZ , making the total available ass boost about 25 dB .
While we show one network of each 'pe on the main circuit, individual conructors may elect to vary this to suit leir own needs, putting in two "flat" ıputs and two "treble boost" inputs' nd so on.
While on the subject of options, we how separately in the circuit another type f input network which provides a conderable degree of bass cut. This may be

Superficially, the circuit looks much the same as the 116 design featured last month. However, the revised operating conditions for the output stage, including the use of more expensive grainorientated transformers, gives a 50 pc increase in power output. Other provisions include a more elaborate input system, the use of a premium quality preamplifier valve and an "extra treble" facility operating on the main feedback loop; these latter features can be added, if desired, to the 116 circuit.

two-way stretch

You can't buy untensilized double play polyester tape in AMERICAN brand. Untensilized polyester tape has a two-way stretch. It stretches your dollar because it's cheaper. In use it stretches your sound. And stretched hi-fi becomes very low-fi. So for fi that starts hi and stays hi . . . use the best. Use AMERICAN.

MANUFACTURED BY GREENTREE ELECTRONICS CORPORATION. COSTA MESA. CALIFORNIA, U.S.A. DISTRIBUTED IN AUSTRALIA BY H. LEVINSON PTY. LTD.

1 Chassis 16in x 7in x 1tin with outward sloping front panel.
1 Power transformer 240 V to 280 V at 200 mA with centre tap, 30 V bias winding, and 6.3 V at 4A with centre tap. A and R Transformer type PTS893, or similar.
1 Output transformer 2.6 Kohms plate to plate with 3.75, 8 and 15 ohm secondary taps. A and R transformer type OT2842, or similar.
2 Octal valve sockets.
1 9-pin shielded valve socket.
2 9-pin valve sockets.
$26 D Q 6 A$ valves, $16 B L 8$ valve, 1 $12 A X 7$ valve, $112 \mathrm{AY7}$ valve.
4 Power diodes, types EM405, 1N3195, OA650, or similar.
1 Bias supply diode, types, BA100, IN3193, or similar.
ILDR, type ORP12, B8-731-03, etc.
1 Neon lamp, type NE2.

CAPACITORS

100 uF 450 VW electrolytic.
100uF 350VW electrolytic.
$50 u F 350 \mathrm{VW}$ electrolytic.
100uF S0VW electrolytic.
$254 F$ GVW electrolytic.
$0.47 u F$ L.V. ceramic. $0.1 u F 400 \mathrm{~V}$ plastic. .047uF 400V plastic. $.022 u F 400 \mathrm{~V}$ plastic. $.01 u F 400 V$ plastic. .018 L.V. plastic. .0056uF L.V. plastic. .0022 L.V. plastic.
1 .001uF L.V. plastic.

1 680pF L.V. plastic.
1 470pF L.V. plastic.
1220 pF L.V. ceramic.
l 150pF L.V. plastic.
l 39pF L.V. ceramic.

RESISTORS

$\frac{1}{2}$-watt, 10 per cent, unless specified.
1x3.3M, 1x2.2M, 3x470K, 1x330K, $3 \times 220 \mathrm{~K}, 1 \times 150 \mathrm{~K}, 1 \times 120 \mathrm{~K}, 8 \times 100 \mathrm{~K}$, $1 \times 82 \mathrm{~K}, 1 \times 56 \mathrm{~K}, 1 \times 47 \mathrm{~K}, 1 \times 33 \mathrm{~K}$, $1 \times 27 \mathrm{~K}, 1 \times 18 \mathrm{~K}, 2 \times 15 \mathrm{~K}, 1 \times 15 \mathrm{~K}, 1$ watt, $3 \times 10 \mathrm{~K}, 1 \times 10 \mathrm{~K}, 1$ watt, $1 \times 6.8 \mathrm{~K}, 1 \times 3.3 \mathrm{~K}, 2 \times 2.7 \mathrm{~K}, 2 \times 2.2 \mathrm{~K}$, 1x1K, 1×470 ohms, 1×220 ohms, Jx68 ohms, 2×47 ohms.

POTENTIOMETERS

4 1M log. (C-taper).

1 IM linear (A-taper).

MISCELLANEOUS

1×8-way tag strip, 2×6-way tag strips, 1×5-way tag strip, 1×4-way tag strip, 1x3-way tag strip, 3x2-way tag strips, 21 lug length of miniature resistor panel.
2 single pole toggle switches.
l pilot lamp assembly.
1 fuse holder.
4 "shorting" type jack sockets and plugs.
1 4-pin speaker socket and plug.
Power flex and plug, clamp and rubber grommet, knobs, shielded cable, hookup wire, nuts, bolts, washers, solder, etc. Remote foot switch and mounting, if desired.
ful in situations where one guitanist with a gain midway between the other nts consistently to use more ss boost in the emplifier than a second itarist finds acceptable.
A further option is a modification to : main negative feedback loop which II provide the amplifier with an addinal 6 dB of treble boost at 3 KHz . : devised the modification after observb that a particular group, who ohecked : emplifier for us, seemed to regard ormal" treble as something above what ual measurement showed to be level. e modification can be wired in perinently or brought into circuit by :ans of a "pull-on" switch attached the rear of the troble tone control. this way, operation of the switch will d 6 dB of treble boost to whatever the atrol would otherwise determine.
Obviously enough, any treble boost obtained from the feedback network ast be at the expense of the total ective feedback. In other words, if we ve 16 dB of negative feedback and we sh to provide 6dB boost, the feedback 11 of mecessity be reduced by about B at the boosted frequencies. Forlately, 10 dB of negative feedback is equate for an amplifier of this type. e network consisting of a 680 ohm istor in series with a 0.47 uF capacitor shown dotted on the sircuit diagram. The modified input networks introce an inevitable loss of gain which uld render the amplifier not quite isitive enough for low output guitars. placement of the $12 A U 7$ in the first ge with a 12 AX 9 would more than set this but could mean that the input cuits might overioad too readily with gher than average signol voltages. :cordingly, we have specified a 12AY7, ess well known premium-quality valve,
two. It has the additional advantage of low-noise low-microphony construction and is therefore a good choice for situations where high energy from bass loundspeakers could vibrate the amplifier chassis.

Incidentally, all these modificationsthe frequency compensated inputs, the 12AY7 valve and the treble boost in the feedback network-are immediately applicable to the 40 -watt amplifier desoribed last month.

A suitable tagstrip will need to be installed adjacent to the input jacks to carry the three networks. We used an 8-lug tagstrip, wired as indicated in the accompanying diagram and mounted by the screw which earlier had held the modulator component tagstrip. The lat-

The vibrato off-on foot switch is the same as specified for our original Playmaster 102 and 103 guitar amplifiers. It can be uset as well as or instead of a switch on the rear of the "Depth" control potentiometer.

As Australian industry moves into an electronic era new applications for printed circuits are developed every day . . . and design engineers expect their printed circuit suppliers to be versatile and flexible.
Constant research and scientific evolution of production techniques at Precision Windings' plant assures first grade manufacture; even relatively small quantities can be produced economically.

PW's photographic process does have many advantages . . . definition is crisp and clear, negatives are readily available for alterations, quality control during manufacture is precise. This is why more and more industrial organisations specify Precision Windings printed circuits.
Delivery is prompt and prices most competitive . . . and advanced technical advice is yours for the asking. Ask for a "no obligation" estimate!

52 Cambro Road, Clayton, Vic.
Tel. 5447370

miniwatt integrated
 It's hard to tell a good I.C. just by looking at

 it. So it's a sound investment to rely on Philips' long research and manufacturing experiencein the field. Don't call your broker-call Miniwatt for the facts on both digital and linear I.C.'s.

ELECTRONICS DIVISION OF PHILIPS
ELECTRICAL PTY
electrical pty. limited.
Sydney • Melbourne • Brisbane
Adelaide . Perth
Adelaide - Perth . Canberra,
has been relocated further back, both avoid crowding and to keep later ring away from the input components. Having looked at the modified input rangements, we can describe the modiations to the output and power supply iges, necessary for the amplifier to liver the additional 20 watts.
As we mentioned last month, z power output stage employs two)Q6A power valves operating push-pull class AB1, with fixed grid bias. In ; 40 -watt unit, the total cathode curat for the two valves was 100 mA
'OWER: 60 watts RMS output. ISTORTION: Total harmonic distortion at 60 watts output is 2 per cent, and 1 per cent at 55 watts output.
NPUT SENSITIVITY: 20 mV for 60 watts output at 500 Hz .
OAD IMPEDANCE: $3.75,8$ or 15 ohms.
diescent), a figure determined mainly
the amount of negative gridas applied.
To obtain the additional power outt, it is necessary to modify the erating conditions of the output lves, involving a slight increase in te voltage, a slight increase in grid nal swing and a reduction in the te-to-plate load impedance from 3300 ms to 2600 ohms.
The increase in supply voltage must countered by a reduction of 5 milliıps in standing current, if the plate sipation of the output valves is to be t inside the limit figure of 18 watts iece.
Reduction of the quiescent current turally involves a modification to the is supply, the required bias now ng about -38 volts. The bias voltage suld be adjusted, by varying the 100 K int, to give a total cathode current 95 mA .
Other than the bias supply, the power ,ply components, with the exception the power transformer itself, are the ne as those for the lower power sion.
Although the quiescent current has in reduced, the current drawn at the aks of the signal excursion will be asiderably greater than it was for the watt version, substantially increasing average current drawn under dynac conditions. This, together with the reased HT voltage, means that the wer supply is called upon to deliver sstantially more power.
The new power transformer has a ondary voltage rating of 280 V overwith a nominal current capacity of 0 mA .
Although both transformers must adle considerably more power in this plifier, they are physically no larger in those for the 40 -watt version. This made possible by the use of grainentated laminations in the transformer es.
When the silicon steel for transformer ninations is rolled, an alignment of crystaline structure occurs, forming yrain in the direction of the rolling. It found that the steel presents less re:tance to the magnetising force, along grain, than it does across the grain ucture; reluctance is the magnetic alogue of electrical resistance. By
stamping-out laminations with the grain orientated in the direction of the longest magnetic path, a transformer can be produced which has lower magnetic resistance and so higher flux density in its core.

By selecting high quality material, taking advantage of grain orientation and using thinner than usual laminations to reduce eddy current loss, it is possible to produce transformers which will handle considerably more power than regular transformers of the same physical size.

Not surprisingly, there is a price to be paid for this and the higher rated power transformer, together with the new output transformer, will cost several dollars more than those for the 40 watt version. (The transformers used in our new amplifier were $A \& R$ types, PT5893 and OT 2842, but equivalent units will probably be made available by other manufacturers.)

Apart from the new transformers and the modified input circuitry, the layout of the basic amplifier has not been changed.

Again we are using the previously described vibrato system, wherein "modulation" of the guitar signal is effected by means of a light dependant resistor in a balanced resistance network. Guitarists who tested the amplifier voted it as about the best vibrato they had ever used, the amplifier showing no tendency to "pump" the loudspeaker cones. The vibrato may be switched by either a switch on the depth control. as indicated in the circuit, or activated by a remote foot switch.

The remote vibrato on/off switch, as pictured, consists of a robust "button" switch, mounted in a small plastic box which has been suitably tapered to a wedge shape, so as to facilitate foot operation. The actual switch may be either of two types, a push-on and pushoff type or a push on type with a self returning spring action. Either way, the assembly must be of such construction

"INNERBOND" (Regd.) BONDED ACETATE FIBRES
 For packing in
 SPEAKER ENCLOSURES

A new resilient Bonded Waddina made from ultra fine Cellulose Acetate Fibres that gives high efficiency for Sound Absorption.
"INNERBOND" is light, clean dust free and easy to handle. Because all the fibres are bonded "INNERBOND" will hang as a "curtain" and will not fracture or break down due to vibration.
"INNERBOND" is odourless, highly resistant to attack by bacteria or fungus and is vermin repellent: "INNERBOND" at 160 sa. yd. repellent: has a nominal thickness of 1 " and at this density is recommended as packing in Speaker Enclosures for Sound Absorption.

STOCKISTS
SYDNEY-Arrow Electronics Piy. Lid., 432 Kent St.: Broadway Electronics Piy. Lid., Broadway and City Rd.
MELBOURNE-J. H. Magrath and Co. Piy. Ltd., 208 Little Lonsdale St.
BRISBANE-A. E. Harrold Piy. Ltd., 123 Charlotte St.
ADELAIDE-Duncan Agencies, 57 Woodville Rd. Woodville: General Accessories, 81 Flinders $S t$.
PERTH-General Accessories, 46 Milligan St. If unobtainable
For 1 sq . yd. as above send $\$ 2.00$
For 2 sq. yds. as above send $\$ 3.75$
For 4 sq . yds. as above send $\$ 6.50$
Postage paid in Australia and Territories.
to the manufacturers
WONDER WOOL
PTY. LIMITED.
87 James Street, Leichhardt, N.S.W. BOX 548 - G.P.O., SYDNEY. Phone: 56-2780.

SAMWA
SANWA ELECTRIC INSTRUMENT CO. LTD.

Top value, protected MULTI-TESTERS

The Model 370-ES measures $A C$ and DC current up to 10 amperes. An overcurrent control circuit incorporated automatically suppresses high current to protect the meter movement from accidental damage. The moving coil is guarded by a replaceable shunt against burning out.

Measurement ranges available

DC voltage: $0.5 \mathrm{v}, 2.5 \mathrm{v}, 10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 500 \mathrm{v}, 1000 \mathrm{v}, 5000 \mathrm{v}$ (20k Ω / v)
AC voltage: $2.5 \mathrm{v}, 10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 1000 \mathrm{v}(4 \mathrm{k} \Omega / \mathrm{v}$)
DC current: $50 \mu \mathrm{a}, 1 \mathrm{ma}, 10 \mathrm{ma}, 50 \mathrm{ma}, 250 \mathrm{ma}, 1 \mathrm{a}, 10 \mathrm{a}$
AC current: 250 ma , 1a, 10a
Resistance: From 30 ohms to 300 k ohms Midscale in four ranges. Volume level: $-20 \sim+62 \mathrm{db}$

The Model U-50D is a pocket-size, high performance circuit tester equipped with a meter movement of 35 microamperes in sensitivity. The high internal resistance of 20 k ohms per volt for DC and 8 K ohms per volt of $A C$ ranges accurately measures voltages of high impedance circuits.
A protection circuit safeguards the meter movement. Shunt adaptors are available to give ranges up to 25 amperes DC.

Measurement ranges available
DC voltage: $0.1 \mathrm{v}, 0.5 \mathrm{v}, 5 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 1000 \mathrm{v}(20 \mathrm{k} \Omega / \mathrm{v})$
AC voltage: $2.5 \mathrm{v}, 10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 1000 \mathrm{v}(8 \mathrm{k} \Omega / \mathrm{v})$
DC current: $50 \mu \mathrm{a}, 0.5 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}$, 250 ma
Resistance: From 50 ohms to 50 k ohms in four ranges Volume level: $-20 \sim+62 \mathrm{db}$

The high-sensitivity suspension band movement of 34.5 microampere is frictionless and accurate. Structurally, the moving part is shock-proof, withstanding impact and vibration. Ranges are smoothly changed over by a unique designed rotary-ring switch. The meter movement is automatically protected from accidental impression of high current. The LI and LV scales provided check all types of semi-conductors. The germanium diode rectifier extends frequency response of the low AC voltage ranges up to 100 k cycles. Even the AC 250 volt range checks voltages of 20 k cycles.

Measurement ranges available

DC voltage: $0.25 \mathrm{v}, 2.5 \mathrm{v}, 10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 500 \mathrm{v}, 1000 \mathrm{v}(25 \mathrm{k} \Omega / \mathrm{v})$ AC voltage: $2.5 \mathrm{v}, 10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 500 \mathrm{v}, 1000 \mathrm{v}(5 \mathrm{k} \Omega / \mathrm{v}$)
DC current: $40 \mu \mathrm{a}, 0.5 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 500 \mathrm{ma}$
Resistance: From 100 ohms to 250k ohms Midscale in four ranges. Load current: LI - $15 \mathrm{ma}, 1.5 \mathrm{ma}, 150 \mu \mathrm{a}$
Load voltage: LV -1.5 v
Volume level: - $10 \sim+10 \mathrm{db},+5 \sim+36 \mathrm{db}$

Sanwa Muliti-testers are available from:

ADELAIDE: 23-3233. BRISBANE: 51-5121. CANBERRA 4-7755. HOBART: Associated Agencies Pty. Ltd. 2-1841 LAUNCESTON: Associated Agencies Pty. Ltd. 2-1318 MELBOURNE: 69-0151. MOUNT GAMBIER: 2-3841. NEW CASTLE WEST: 61-4077. PERTH: Henderson Instrumen Co. Pty. Ltd. 8-4131. SYDNEY: 29-1111. WOLLONGONG 2-5444 and appointed wholesalers.

o stand plenty of knocking about. foot switch is connected to the amp-
by a length of small diameter e-8 twin flex with a standard telene jack.
ur switch container was made from mall plastic box manufactured by kin Wynne Pty. Ltd. and measuring $x 2-5 / 8 \times 1-5 / 8 \mathrm{in}$. The rear edges e tapered to obtain the wedge shape two holes drilled, one toward the ,h" end and on top to mount the tton" switch and the other in the 1 end itself, through which the cord res. In addition to a grommet being ed in the latter hole, some means ecuring the cord should be provided, prevent mechanical strain being ied on the soldered switch connecs.
hould a more robust foot switch be nired, an auto headlamp dip switch Id be mounted in a metal box; the al box could be folded from heavy ge sheet aluminium. An alternative ingement might be a wedge shaped den block which has been suitably owed out so as to accomodate the tch.

ISIC RADIO COURSE:

On page 61 of this issue we present what is, in effect, an additional chapter for your "Basic Radio Course"-the first of two which will cover the subject of television. The author, by the way, is our Associate Editor, Philip Watson.

You may care to cut out the relevant pages and keep them inside your copy of the course.

For those who may not have been aware of it, complete bound reprints of the Basic Radio Course (Chapters 1-24) are available from our office at $\$ 1.50$, or at $\$ 1.60$ posted to any address in Australia.

A switch which appeared to be rugged enough to withstand severe punishment is made by Alpha Engineering Co. Pty. Ltd. of Sydney, and marketed under the trade name of "Alpha."

Construction of the amplifier is virtually identical to the Playmaster 116, with the exception of the additional tag strip at the input which we mentioned previously.
Again we would sound a word of warning regarding the feedback connection, which should be made after the output and driving stage is functioning normally. If the amplifier remains stable
after the feedback connection is made and there is a drop in the level of any test signal from the amplifier, the feedback is negative and all is well. If the gain increases, however, and/or the amplifier howls, it is a sure sign that the feedback is positive.
Since it is logical, and an unwritten law, to leave the common end of the seconldary earthed and not to cross over the flying leads to the output valves, the simplest modification is to swap over the "drive" leads from the component board to the grids of the two output valves.

ERRATA AND NOTES

Playmaster 115, April, 1967. Corrections to parts list: The power transformer secondary should be 70V.CT, not 75V.CT. The balance potentiometer should be 2 M (lin), not 1 M .

ACOS CHANGER DUST BUG

PRICE: $\$ 5.50$

Essential to all who value their records, the Changer Dust Bug clips easily over most changer arms and sweeps the record both before and behind the stylus, at the same time depositing a very fine antistatic film which prevents dust attraction through static changes. Record and styli life can be increased by up to five times with a Changer Dust Bug. Spare fluid, bristles and plush pad are available in complete spares kit.
ÀMPLION (A/SIA) Pty. L.td., 29 Major's Bay Rd., Concord, N.S.W.

Grundig world-range radios

TR5000

The Grundig name has become a legend for quality in radio sound. And with radios like the extraordinary Grundig Sattelit, it's no wonder! You can be an eavesdropper on the world. Two Superphon dynamic loudspeakers give you world-wide reception on thirteen wavebands-with an unbelievable depth and clarity of sound. Short wave, FM, bandspread, too! The Satellit TR5000 is designed to operate on batteries or AC mains, and receives VHF/FM, long, medium and short wavebands. The short wave coverage ranges from 10 to 187 m. ., split into four bands.

Additionally, six bandspread short wave ranges are provided, shown on a separate scale with a rotating drum selector. The Satellit is fitted with 17 transistors and 11 diodes. It features a short wave fine tuning dial, automatic frequency control on FM, R.F. stage, a switchable ferrite aerial, a double extension telescopic aerial, a separate control for the bandspread short wave tuner, duplex drive on FM/AM, a tuning and battery indicator, and two multi-octave loudspeakers. The Satellit also has an illuminated tuning scale and separate bass and treble controls. Sockets are provided for headphones, external aerial and earth, car aerial, record player, tape recorder and external battery power supply.
The Satellit transistor 5000 has a handsome padded graphite case with chrome and satin silver trim. It measures $16^{\prime \prime} \times 10^{\prime \prime} \times 4 \frac{3}{4}$ ".

TR3000

The Ocean Boy TR3000 is not just a transistor radio, it is a perfect piece of precision engineering. The whole world's your oyster with the Grundig TR3000. Choose a wavelength by pressing one of the nine buttons and using the fine tuning control. See visually when you are at the point of best reception by the tuning indicator (which doubles as battery indicator). Adjust the bass and treble tone controls and you're hearing a radio that's built for listening to, not straining at. The Ocean Boy has two loudspeakers, 13 transistors, 8 diodes and 2 rectifiers. Provides matchless listening on VHF/FM, long, medium and 4 short wavebands (10 to 185 m .). Output is up to 2 watts (R.M.S.).

By Goldring Engineering (A'sia) Ply. Lit

[^1]
The Sarvicennin

WHAT'S IN A NAME-OR A BRAND?

Abstract

"Someone's not playing the cards I dealt 'em!" So runs the rather classic quip. Perhaps not surprisingly, it came to mind when I sat down to recount this month's main story.

It began in a perfectly routine fashion ith a telephoned complaint from a set wher that the picture on his TV screen vas getting less and less clear and he'd ecided that it was about time he had omeone look at the set. He volunteered, urther, "that the picture seemed to have uriggly dots all over it."
From the description, I gathered that ae "wriggly dots" would probably be hat we would more commonly describe s "snow" or "noise" in the picture nd this lis what it turned out to be, then I was at last confronted by the ffending receiver.
Perhaps a word of explanation would ot be amiss for the rising generation of vould-be servicemen:
Most of the spurious signals which roduce these disturbances on the screen ccur in the circuits and valves in the ront end of the receiver itself, and are ue to slight irregulatities in current ow. With a strong input signal these isturbances are so weak by comparison hat they are of little consequence. Proiding the set's AGC system is working orrectly, so that the gain of the set ; suitably reduced to prevent overload, ais favourable signal-to-noise ratio will e maintained right through the set to te picture tube. The picture is, thereore displayed to best advantage.
However, when the incoming signal is ,eak the disturbances in the front end ircuits may well approach them in magitude, resulting in a poor signal-tooise ratio. To be sure, the AGC system ,ill have sensed the weaker signal and dvanced the gain of the set to cope rith it, but this will do nothing to imnove the signal to noise ratio. All that ill happen is that the disturbances will e amplified along with the wanted sigal, and eventually appear on the picture tbe screen as "wriggly dots." In an orinary sound-only receiver, the spurious gnal is heard as a rushing or swishig sound and the term "noise" is thereore appropriate.
In a television receiver, the same henomenon produces "wriggly dots" on re screen, mixed up with the wanted nage. In some cases, the effect is derribed as "snow" but, in technical rcles, it is more usual to stick to the ord "noise." In fact, "noise" is used ery widely throughout the electronics idustry to describe the spurious energy hich a circuit or a piece of equipment ıperimposes on any kind of wanted lectrical signal.
Well, after that "Answer Man" effort, d better get back to my original story.
measured across the two ends with an ohmmeter. It showed very low DC resistance, indicating that the circuit was apparently complete, up one feedwire, through the folded dipole and back down the other feedwire.
Assuming the aerial to be in order, the noise problem looked like having to do with the receiver itself.
Typically, there could be a faulty valve in the tuner or a faulty component, connection or contact. If any of the latter, I might face the decision of having to fiddle with the tuner on the spot, risking waste of time and possible failure, or else taking the tuner out and sending it back to a repair depot. Understandably, servicemen don't like faults in tuners!

As against a possible tuner fault, there was one other "hope" - a fault in the AGC circuit to the IF amplifier. If an open resistor or a leaky bypass capacitor prevents AGC voltage from reaching the IF system, it operates "flat out" and causes a very high AGC voltage to be applied to the tuner. If the tuner AGC is high enough to cut off plate current in the RF amplifier valve, only the merest trace of signal may get through but the IF amplifier will amplify it, along with "noise" from the frequency changer, to produce a "noisy" picture.
But, with the hope that it wouldn't be as complicated as all this, I reached in and pulled out the RF amplifier valve - a 6 BQ 7 A . What there was of the picture disappeared forthwith. Reaching into my kit, I pulled out a spare 6BQ7A, plugged it in and waited for the picture to reappear - I hoped, free of noise.
But in vain. The picture, when it appeared, was even "noisier" than before!
Strange, my spare 6BQ7A must be a dud! With some misgiving, I went out to the truck and brought in a couple more. But neither of these was any better. Yet, when I put back the original 6BQ7A, the picture reappeared in its original, rather noisy form.

What the hec?

Then, suddenly, the bells began to ring. The set was of a type which always used a particular brand of tuner and these tuners NEVER used a 6BQ7A! They always used a 6ES8.
What was I doing then, plugging in 6BQ7A's? And how come that I'd pulled a 6BQ7A out of it?

So, for the first time, I took a good look at the original "6BQ7A." Despite its very clear brand, it was nothing of the kind. Instead of the two slim triode structures inside, it had the more involved and bulky shielding that charaiterised the 6ES8 that it should have been - and was!

And, sure enough, when I plugged in

More light on colour television

Strictly incognito, your Serviceman was wandering around the recent IREE convention displays and noted a photographer getting all set to take some pictures off one of the colour television screens. A few minutes later, the program began to roll and the photographer started systematically to snap the best scenes-with the aid of a flashlight!

What a set of pictures would be his reward . . . a whole roll of pictures of a colour set with a biank screen.

Somebody should have told him that a colour television image is not an object-therefore it can't be illuminated by incident light. The image is itself a pattern of light and hitting it with a flash would simply wash it out. What would happen to the picture on the screen of your favourite drive-in if all the cars turned their headlights on to it?

Sansui lays it on the line

Look at that distortion curve.
It, better than pages of exaggerated advertising claims, tells the serious stereo fan something about the kind of engineering that has gone into building a receiver.

While this curve belongs to Sansui's Model 3000, it is the result of the same engineering, the same careful component selection, and the same precision fabrication that goes into every product carrying the Sansui name.

Sansui's line of audio equipment
includes more than a dozen quality receivers at all power outputs -solid-states, tube types, single or multiple band tuners, amplifiers, amplifier-tuners-as well as matching speaker systems and stereo headphone sets.

Pick up specifications for any Sansui product and you'll find performance and distortion characteristics laid on the line as few stereo equipment manufacturers would dare.

Then listen to a Sansui at your
dealer for a frank personal appraisal.

Sansui model 3000: Solid-State AM/ FM Multiplex Stereo Receiver. Total output power: 130 watts. RMS power: 48/48 watts. Stereo RMS power: 45 watts x 2. Bandwidth: 20 to $20,000 \mathrm{~Hz}$. Harmonic Distortion: less than 1% at all power levels.

Sansuio
new 6ES8 the picture came up with ractly the same order of noise as when had first switched it on.
As it transpired, the noise disappeared ie moment I replaced the frequency ranger - which was the next step It I left the place with a shake of the 3ad. As if television receivers haven't rough tricks of their own, without bug. ng them with wrongly branded valves! How did it get there in the first place? ecause, I imagine, people in the valve ctory identify valves by batches and by spearance, rather than by reading every dividual type number. And the same ould go for the person who plugged the rongly branded valve into the tuner. looked right, it worked right and it as right - except for the brand.
But what a mess Id have got into if hadn't been quite so familiar with the articular brand of receiver!
As compared with this call, which was my much out of the ordinary, the next ill on my list was of the kind that I on't enjoy, any more than any other rviceman.
The complaint, in this case, was that e set had lost its picture altogether, ,art from a fow white streaks. When took a look at the screen, I quickly alised that the white streaks were mply highlights from the picture - the ily part of it that was visible.
It seemed clear enough that the brightuss circuit had developed a fault so that, 'en turned right up, the brightness conof did not raise the picture tube above sam cut-off. In an effiort to correct the tuation, the owner had turned the)ntrast to maximum, causing just the zak whites to break through.
A bit of probing around the leads to is picture tube socket confirmed that e grid potential was well below cathode atential, irrespective of the brightness ntrol setting. This much was not hard
verify. The unwelcoms thought was at the component responsible, either a sistor or a bypass, was hidden away in e chassis, which was going to take me half-hour or so to remove and reistall. I did it without much in the way E good grace and my mood wasn't im:oved when the owner quibbed about ie fee, on the grounds that I surely lasn't going to charge all that for one ny little "resistor thing."
But, if there was a risk of generating ard feelings about owners in general, le temptation was countered by the nowledge of the "swifty" that a few srvicemen have been known to pull in tese same circumstances.
Through ignorance or by design, tey blame the dim picture on a failing ibe and proceed smartly to sell and fit picture tube brightener. Prompted by re increased heater voltage, the tube roduces a more normal picture - for time! In fact, the receiver still contains ie original fault but, by the time it is aced and corrected, the picture tube ion its way to an early demise.
I wonder haw such operators can eep at nights.
By way of a change from television. ere's a story which may be of interest , "audio" types.
It actually started with a call to fix fault in a television set-a call and fault which. in themselves, would not ave warranted any comment. However. ith that job done. the owner asked re whether he could pay for a few xtra minutes of my time, to have a rok at a peculiar fault in his homelade hi-fi system.

I hummed and harred for a few moments, to clear the way for a hasty retreat, should it have proved to be necessary. Home constructors don't always realise that it involves an outlay of real time to become familiar with their circuits, their method of construction and their problem before one can begin to diagnose and "prescribe." And somebody has to pay for this time, if the serviceman is not to work for nothing!

As it transpired, the equipment was not home constructed in the normal sense of the term. My client had bought a crystal cartridge, player, amplifier and loudspeakers separately and assembled them in his own cabinet. And I must say that the sound was excellent, considering his relatively modest outlay.
The one trouble was that the system would not play the extreme outside grooves of a few of his recordsand this he proceeded to demonstrate. The pickup could be lowered manuadly on to the run-in grooves, would appear to "seat" normally and then, just before the music started, the pickup would jump inwards by about $1 / 8$-inch, missing the opening stanzas altogether. On other records, it was perfectly normal.

The natural thing was to suspect some roughness in the, vertical bearing, causing the pickup to jump over a high spot. But I certainly couldn't feel any roughness-and why should it happen so positively on particular records, with no hint of trouble on others?

Close examination revealed that the records which were giving trouble were those with a rolled, rather than a flat edge and my first guess was that the stylus was simply sliding downhill. But lowering the pickup gently to where there could be no "hill" didn't overcome the effect. However, in an effort to clarify the situation I undid a couple of screws and propped up one end of the motor board so that the pickup arm had to climb up a definite incline towards the centre of the record. But. alas, on the troublesome records it flipped towards the centre as positively as ever.

In an effort to watch more closely, the behaviour of the stylus in the groove, I got down on my haunches. end on to the pickup and had my client hold a torch on the scene while I slowly lowered the pickup into the outer groove.

And, suddenly I spotted the cause. On either side of the stylus, the underside of the cartridge had a slight shoulder, perhaps intended to limit upward thrust of the stylus in the event of the pickup being dropped on to the record. Normally, the shoulders rode just clear of the surface but, on the troublesome discs, the outer shoulder in this case was just fouling the rolled edge. Just as the drag on a stylus tends to pull a pickup towards the centre of a disc, so this unusual friction flipped the pickup violently inwards.

I suggested to the owner that the stylus may have been bending-or have been bent-by excessive playing weight, or that the socket through which it excited the crystal may have been slight. ly out of position. Yet again, he might be able, very carefully, to file away a little of the offending shoulder.

What he will do about it I'm not sure but my impression, as I took my leave, was that he would probably buy a new cartridge. I gained the impression that he'd been looking for an excuse, anyway, to shout himself a new diamondtipped ceramic!

WHATED(0) RYM

MANUFACTURERS SPECIAL PRODUCTS PTY. LTD.
47 York Street, Sydney. 20233, Ext. 284

The new concept of value for

Design ingenuity now makes possible aboveaverage stereo quality for home and car at truly moderate cost. Tempo offers the features and good value for money that you've been waiting for!

TEMPO "SLIMLINE" LOUD SPEAKERS

Dimensions $22^{\prime \prime} \times 17 \xi^{\prime \prime} \times 4 \frac{1}{2}$ Number of loudspeakers: 10 (5 to each cabinet). Impedance: 8 ohms. Output: 25 watts.

TEMPO
BOOKSHELF SPEAKERS are also available in two sizes: 'MINI', $14^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$ and 'PEERLESS', $21^{\prime \prime} \mathrm{x}$ $11^{\prime \prime} \times 9^{\prime \prime}$

CHAPTER 25: Television. Basic concepts. The elemental area. Scanning. Electronic scanning.
Deflection systems. Interlaced scanning. Synchronisation. Vertical and horizontal pulses. Sync. separation. Camera tubes. Iconoscope, Image Orthicon, Vidicon, Plumbican. TV standards. Number of elemental areas. Bandwidth.

No discussion of "radio" would be omplete without at least a mention of elevision. Unfortunately, a complete and letailed description of modern TV sysems would require as much space as ve have devoted to our entire radio :ourse, so the best we can hope to do n a couple of chapters is to put the tudent on nodding terms with the subect. This will at least prepare him for nore serious studies.
Perhaps the best place to start such a liscussion is with the TV image itself - the form it takes and the reasons vhy the eye is able to accept it.
Consider the eye first. It has two charcteristics which make TV possible; both lready exploited in other spheres. Probbly the best known is "persistence of ision" - the fact that the eye retains he image of a scene for about $1 / 16 \mathrm{sec}-$ nd after the scene itself has been renoved.
It is this fact that makes motion picures possible in the form we know them, ince it enables a series of still piotures, resented in quick succession, to appear s a continuous picture, with small differnces between them appearing as moverent. In practice, motion piotures use nything from 16 pictures (frames) per econd for amateur systems to 30 frames er second for some of the more elabrate wide screen theatre systems. More onventional theatre systems use 24 rames per second.
The other characteristic which we redit, in broad terms, to the eye is its bility to accept. as a complete picture. 1 image which is, in reality, composed f a number of small discrete areas. A lassic example is the "half tone" reprouction of a photograph in a newspaper r magazine. Since the printer has no 'ay of presenting actual tones between le white of the paper and the black the ink, he resorts to the trick of eeaking grey areas into patterns of tiny ack dots, their size relative to the sur,unding white areas determining the rade of grey. The eye accepts this as a omplete picture.
In part, this reaction is undoubtedly ue to the simple physiological fact that te eye cannot resolve detail below a ertain minimum size. Thus if we view ay reproduction at a sufficient distance ie eye simply cannot resolve the deets and the viewer is therefore not onscious of them.
However, this is not a complete ex-
planation. The fact is that the impres sion of a recognisable image, complete with varying shades of grey, is retained even when the dot structure is coarse enough to be clearly visible. This sug. gests that there is a psychological basis for this phenomenon. whereby the mind "fills in" the missing detail.
In any case, and whatever the reasons, the fact remains that the "eye" is remarkably accommodating in this regard. It is this fact that makes the TV image as acceptable as it is.

Now let us consider how the TV image is constructed.

In order to transmit an image from one place to another, electronically, it is necessary to divide the image into a large number of discrete areas (much like the dots in the newspaper reproduc-

Figure 1. An elementary scanning pattern. The solid lines represent the scanning movement, the dotted lines the retrace action. The distance between the lines is exaggerated to simplify the drawing.
tion discussed above), measure the light value of each area, and convert this to an electrical signal suitable for transmission to the distant point. At the distant point the process is reversed. The signal is used to generate light which has a similar value to that of the original image area it represents.

Assuming that we make the discrete areas small enough and re-assemble them all in the right order at the distant point, the eye will accept the presentation as that of a complete picture. We do not even need to present all the areas at the same instant. Assuming that we can present them rapidly enough, such that they are all presented in about

1/16 second, we can present them one at a time and the eye's persistence of vision will retain them all and form a complete picture.

This is important, because it would be impractical to provide a separate circuit between each ELEMENTAL AREA at the transmitter and its opposite number at the receiver. On the other hand, it is relatively easy to interrogate each elemental area on a sequential basis, transmit the information it contains, then move on to the next one and repeat the process. When the last element in the picture has been interrogated, the system starts all over again with the first element and transmits another complete picture. Again assuming that this can be done at $1 / 16$ second - or faster -the eye will not only see a continuous picture, but will be able to observe any movement that oscurs
This, then, is the broad basic principle of television; divide the image into elemental areas, interrogate or SCAN each area sequentially, convert its light value to an electrical signal, transmit the signal to the distant point, convert it back to light, and re-assemble each elemental area in its correct relative position. Do this at least 16 times a second and the eye will see a continuous moving image.
So much for the broad picture. How do we achieve all this in practice? How do we scan the elemental areas? How do we convent light into electricity and back to light again? How do we keep the receiver scanning in step with the transmitter? What are the practical standards of modern TV systems?
Scanning an image for TV transmission has been tackled in many ways, including a wide variety of relatively crude mechanical systems used by early experimenters. While we are not interested in the mechanical details of these systems, the broad principles they employed may prove helpful in explaining the scanning concept. (Figure 1.)

As a simple explanation, let us suppose our subject is a large two-dimensional object, such as a poster or sign. And let us further suppose that, for the moment, we are not interested in transmitting movement.

Facing the poster we set up a bank of photo-electric cells. There are many forms of these, but they all perform a similar function-the conversion of light into an electrical signal approximately proportional to the light intensity. Some cells do this by actually generating electrical energy from the light energy. Others vary their resistance and so control an external source of energy.

We start with the poster in near-dark conditions so that little or no light is reflected from it on to the cells. Then we take a concentrated light source, such as a spotlight or sharply focused torch, and shine a small spot of light on the top left corner of the poster.

Technically Tested and Proven Circuitry

MW.MW.SW STEREO TUNER AMPLIFIER Model W-26
the sound approach to quality

SPECIAL TK.400E FEATURES: Com-

 pletely transistorized pre-amplifier and main amplifier all on a single chassis. (Total 21 transistors.) New AUTOMATIC circuit breaker protects transistors for added long life. (U.S. Pat. No. 3,277,386)
- OUTPUT POWER: 80 watts total music

 power (IHF Standard) or 40 watts per channel. 32 watts RMS power per channel. - DAMPING FACTOR: 20. FREQUENCY RESPONSE: $20 \cdot 50,000 \mathrm{cps} \pm 1 \mathrm{db}$.- SWITCHES: Input selector, Mode selector, Low Filter, High Filter, Loudness, Speakers and Phones, Phase, Tape Monitor. DIMENSIONS: Width $1514^{\prime \prime}$, Height $53 / 4^{\prime \prime}$, Depth $121 / 4^{\prime \prime}$.

SPECIAL W- 26 FEATURES: Built-in MW Stereo circuit is provided for MW stereo broadcast. A new, two professional type tuning meters are illuminated to make pinpoint tuning possible.

- OUTPUT POWER: 24 watts total music power (IHF Standard) FREQUENCYRESPONSE: $20 \cdot 20,000 \mathrm{cps}(\pm 1 \mathrm{db})$ SEN. SITIVITY: MW; 10 microvolts $1,000 \mathrm{KC}$, SW; 30 microvolts 17 MC (Input required for S N 10 db) SPECIAL CIRCUITS: Loudness Control, High Filter, Tape Monitor. DIMENSIONS: Width $17-11{ }^{\prime \prime}$ ", Height $5 \cdot \frac{1971 "^{\prime \prime}}{}$, Depth $14^{\prime \prime}$.

Manufactured By TRIO CORPORATION 6-5, 1-chome, Shibuya, Shibuya-ku, Tokyo, Japan

[^2] Melbourne: 15 Abbotsford Street, North Melbourne Tel: 30-2491 Adelaide: 652 South Road, Glandore Tel: 53.6117
he size of the spot constitutes our emental area and the smaller we can ake it the more detail we will be ,le to transmit to the distant point. From the top left corner we move le beam to the right at a steady rate, seping it paralle! to the top edge. As e do so, the light reflected into the soto-cells will vary according to the ittern of the poster. Where it is white e cells will receive the maximum nount of light, where it is black a inimum and, for intermediate tones ppropriate amounts of light. These variions will be converted into similar riations of current and transmitted to e distant point.
When the light spot reaches the top ght hand corner it is flicked quickly ack to the left hand side and, ot the me time, downwards by the diameter the spot. It now traces a second line, urallel to the first, with the top of the sw line just touching the bottom of the evious one. Thus, another line of inrmation is transmitted to the distant rint.
This line-by-line analysis continues unthe last line is traced at the bottom the poster and the spot reaches the ittom right hand corner. Then it is cked back to the top left corner again id the whole process repeated.
As a receiver, we might envisage a simir spotlight, arranged to illuminate a reen and scan it in exaot unison with e one at the transmitter. The signals om the photo-cells, suitably amplified, suld be used to control the light inasity. Provided the whole process was mpleted within about $1 / 16$ second, the e would see a complete picture.
Although we selected a poster as a npls subject to explain the process, is system could be used - and, in ct. was used in early experiments televise conventional scenes and obits, including people. Movement is porlyed almost automatically, once we insmit successive pictures with sufficit rapidity to present a continuous lage.
A serious objection to this scheme is at it can be used only where the lightg is under complete control, as in a idio. It cannot be used for outdaor enes where the natural highting is high, ice the cells are unable to differentiate tween the ambiert light and the scanng beam.
The obvious need, therefore, is for me scheme whereby the image can be llected by a lens and projected on to suitable scanning device located at its cal plane (i.e., the position the film suld occupy in a conventional camera). uly expenimenters made many attempts produce such a camera, using mechical scanning systems, but they met th only limited success. It was not til the development of electronic scan1 g , and its application to the TV cama, that any degree of success was achned.
In passing, it is interesting to note that completely electronic scanning system "Distant Electric Vision" was sugsted by the English scientist. A. A. impbell-Swinton, as early as 1908 and ain in 1911 in greater detail.
Since eleotnonic scanning is the basis - all modern TV systoms, it is worth nsidering in some detail. Those who familiar with the oscilloscope will be :ll on the way to understanding the sic principles, and may with advantage er to Chapter 16 for a brief refresher.

Electronic scanning, at both transmitter and receiver uses modified versions of the simple cathode-ray tube used in oscilloscopes. An ordinary cathode ray tube is normally made of glass, is roughly conical in shape, and has a screen of fluorescent material at the larger end. At the small end, and directed towards the screen, is a heated cathode wich produces a copious stream of electrons from its hot surface, in exactly the same manner as a valve. (See Chapter 6.)
By means of an electrode assembly known as a gun the electrons are conconcentrated into a narrow beam and directed towards the screen at quite high velocity. By varying the voltazes applied to the gun the beam may be focused to a fine point by the time it reaches the screen. It would normally strike the centre of the screen unless

A complete defiection coil assembly is commonly oalked a DEFLECTION YOKE. Magnetic deflection has a number of advantages, particularly where large picture tubes are concerned.

In addition to the various focusing and deflecting electrodes, the tube is fitted with a control grid which functions in almost exactly the same way as its counterpart in a valve. Thus, by applying suitable values of negative voltage (relative to the cathode) the electron stream intensity may be reduced or even out off completely, thereby varying the light intensity on the screen in a similar manner. This characteristic of the tube is mosit useful at the receiving end of the system.

By generating suitable voltage or current waveforms, called SAWTOOTH waveforms, and applying them to the deflection plates or coils, we can cause

Figure 2. A cathode ray tube. As shown it is fitted for magnetic deflection and focus, but electrostatic focusing is often employed. In practice the deflection coils are larger and combined into a single unit called a yoke. A receiver picture tube has a much larger screen and is much shorter relatively.
otherwise deflected. (Figue 2.)
When the beam strikes the fluorescent material it causes the latter to emit light, the brightness depending on the rate at which the electrons reach the screen, and the colour on the material from which the screen is made. Almost any colour, or white, can be produced by suitable mixtures of screen materials.

To make use of this electron beam some means must be provided to deflect it to any pant of the screen. In the smaller cathode ray tubes, such as used in instruments, the deflection system is built into the tube. Between the gun and screen are two pairs of deflection plates, one nominally horizontal the other vertical.

If a voltage difference is applied to either pair of plates, the beam will be deflected towards the positive plate. Thus the vertical plates will deflect the beam horizontally, and the horizontal plates will deflecit vertically. To avoid confusion, the plates are usually referred to as "horizontally deflecting" and "vertioally deflecting." This method of deflection is known as electrostatic, and is most useful in small tubes used in conventional oscilloscopes. It was employed in early TV systems, and still is to a limited extent, but has been almost entirely superseded by MAGNETIC DEFLECTION.

Magnetic deflection employs deflection coils mounted outside the tube and through which are passed suitable deflection currents. The magnetic fields which they produce deflect the electron beam.
the electron beam to trace out a pattern similar to the one we described using a spotlight. The advantage of the electron beam over the light beam is that the electron beam may be deflected virtually instantaneously. The light beam, by comparison, can only be defleoted by moving relatively heavy optical elements, thus severely limiting the speed with which we may scan our picture. Alternatively, we would need prahibitively bulky and expensive mechanical systems.

Two sets of deflection signals are needed to produce the pattern wo require. One set operates at relatively high frequency and is applied to the horizontal deflection components. This causes the beam to move from left to right across the screen at a steady rate, then return almost instantaneously to the left hand side and repoat the steady sweep. At the same time a lower frequency signal is applied to the vertical deflection components so that the beam is moved down the screen.

By suitably relating the two frequencies the beam is moved downward at a rate which allows the horizontal movement to trace out a series of lines one below the other. When the bottom of the screen is reached, both deflection systems return it quickly to the top left corner and the process is repeated. The pattern which is traced in this manner is called a RASTER.

In the Australian TV system, 25 complete rasters are traced out every second and a complete raster is known as a

AUNOX:FWUSICAMSHIH.

Shhh is the colourless, neutral sound of a perfect loudspeaker, reproducing electronically generated random noise - white noise. This is a very stringent test, which few loudspeakers can withstand. Most react by emitting a hollow gritty noise, indicating faulty transient response which blurs the music and tires the listener.
All KEF SPEAKERS are tested with white noise and those which fall short are ruthlessly eliminated. Shhh is the secret of KEF's quality and smoothness, in a word - LISTENABILITY.
The CONCORD is one of the few examples of near perfection in sound and this system will soon be available in Australia. So will be the startingly new and most exciting CRESTA and CARLTON systems introduced at the 1967 audio fair in London. These will suit other purses.
The CONCORD was introduced at the 1966 U.K. audio fair and Hi-Fi News Magazine (U.K.) reported then from London: "Aural centrepiece here was the new Concord speaker-system, a development of the Duette Mark II, which has been so upgraded, that a new name was called for. A number of cabinet and drive-unit refinements have produced a REALLY SUPERB SOUNDING SYSTEM, GIVING A LOVELY SENSE OF AMBIENCE ON KNOWN RECORDINGS. IT WAS VERY EASY TO FORGET THE SPEAKERS AND BECOME IMMERSED IN THE MUSIC. KEF WERE USING ADC PICKUPS."

THE KEF "COMCORD," reviowed in HI.FI Mews March '67

In his review, R. L. West, most probably the most highly regarded speaker authority in England, says: "At the first moment of switching on, one realised it was an OUTSTANDING SPEAKER. Things felt real and alive, even at low levels . . . It was a pleasure to listen to the many tapes and B.B.C. programmes and hear really clearly once again . . . Listening is entirely without fatigue . . . Over a long period of listening nothing ever seemed to catch it out . . . The reviewer was so intrigued, that it was compared against a large number of speakers and the original judgement was not shaken in the least .. . Non-compromise response down to $45-50 \mathrm{~Hz}$ and still useful down to 30 Hz ."
The CONCORD employs the famous KEF B139 Mark II and T15 Mark II units skilfully blended with a sophisticated seven-element printed circuit network to give smooth coverage of the entire audio range. The bass reproduction is quite astonishing from such a small enclosure. Organ pedal notes and the bass instruments of the orchestra are brought out with amazing clarity and weight, so that the Concord can be compared with the largest and much more expensive systems. The T15 Mark II tweeter is notable for its remarkable musical quality, reproducing massed violins and soprano voices with beguiling translucency.

WATCH FOR FURTHER ANNOUNCEMENTS

WHAT GOES IN MUST COME OUT

THE ADC. 220 STEREO CARTRIDGE

For optimum performance you cannot possibly buy a more advanced pickup cartridge than an ADC and there is a large range to choose from for all applications. The secret of ADC cartridges and their unparalleled performance is the exclusive and patented INDUCED MAGNET PRINCIPLE, which slashed mass of the moving system to half or one-third that of other high-grade cartridges currently available. Find out more. AND IS THERE A BETTER AMPLIFIER THAN THE ADC "SIXTY," A BETTER PICKUP ARM THAN THE PRITCHARD MARK II AND A BETTER TURNTABLE THAN THE JH? WHERE?

THE ADC "SIXYY" AMPLIFIER

J. H. REPRODUCERS PTY. LTD.

Exclusive Australian Representetives of ADC, U.S.A. and KEF, U.K. and Maters of the JH. Synchronous Turntable.

icture. This figure of 25 is higher than te minimum figure of 16 suggested arlier, and is necessary to minimise icker. It is also close enough to the ormal motion picture rate (24 pictures er seccnd) to enable films to be scaned directly at 25 pictures with negliible difference to the rate of movelent or pitch of sound.
But a presentation rate of 25 pictures er second is not sufficient in itself to educe flicker to an acceptable level. his problem is not peculiar to teleision; it is also enccuntered in motion ictures. In the latter case it is overcome y a simple modification to the shutter, hereby each picture is presented twice, hus presenting the eye with a 48 Hz licker rate rather than one of 24.
In TV systems the problem is overome by a technique called NTERLACED SCANNING, which is variation of the simple scanning proess already discussed. In simple scanling we assumed that the lines would e scanned in logical sequence. 1, 2, 3 . , etc., stanting from the top of the picure. In the interlaced system we scan 11 the odd numbered lines first, i.e., 1 . , 5, 7, etc.. then return to the tor of he picture and scan the even lines, 2, 4. , 8, etc. Either one of these scans is alled a FIELD (Figure 3.)
Thus we fill the screen with half the otal light 50 times a second, rather than he total light 25 times a second. As far s the eye is concerned, it reacts almost xactly as if we had presented 50 comlete nictures per second, rather than mly 50 fields. At the same time we void the serious bandwidth compliaions which could result from trying to ,resent 50 complete pictures per second. What is meant by "bandwidth?" We hall explain the term a little later.)
The interlace function is not as diffiult to provide as might be imagined, Ind is mainly a matter of selecting suitble transmission standards. One of these s the vertical scanning rate, which must ,e double the rate of complete pictures o be presented per second. Thus, to ,resent 25 complete pictures per second ve scan the nicture vertically 50 times ler second. The other requirement is hat the number of lines per picture nust alwavs be an odd number, regardess of the actual standard selected e.g.g., 405. 441, 525, 625, 819).

The odd number of lines means that ach field will involve an odd half line .e.. for the 625 line svstem each field sill consist of $312 \frac{1}{2}$ lines. The time reeded to scan half a line is also the ime needed for the vertical scan to move lownward bv half the distance hetween he previonsly scanned lines, say the irst and third. Thus the sccond field interlaces the first field automaticallv.
So far all our references to scanning echniques have simply assumed that we can provide some means of keeping the scanning system at the receiver in step with the one at the transmitter. without offering any explanation. This
process is called SYNCHRONISATION or, more commonly, SYNC. We will now consider this in more detail.

Synchronisation is achieved in practice by transmitting a regular pattern of pulses, called SYNC. PULSES, along with the picture information. Success of the system is based on the assumption that the receiver deflection circuits can quite easily be adjusted to run at approximately the frequency required and that this is all that is required if the pulses from the transmitter can be used to provide the final frequency correction and to adjust the phase. (Figure 4.)

There are two sets of sync. pulses, one for each of the deflection oscillators. To control the horizontal oscillator, a single narrow pulse is transmitted at the end of every line. This "instructs" the scanning oscillator to return the beam to the left hand side of the raster (RETRACE) and commence tracing a new line. During the retrace and scanning period the deflection oscillator is "running free," and subject only to its own frequency determining components.

To control the vertical oscillator a series of pulses are transmitted at the end of each field. They are broader than the line pulses and grouped close together, which enables the system to distinguish them from the line pulses. It does this by INTEGRATING (adding together) the pulses to make one large pulse, which then serves to "instruct" the vertical oscillator to retrace to the top of the raster and commence a new downward scan. As with the horizontal
son of their position, in time, the sync. pulses do not interfere with the picture information.

However, the reverse is nct automatically true, and it is conceivable "that video information could be "seen" by the synchronising circuits and mistaken for sync. pulses. This is overcome by presenting the video and sync. pulses at different levels. In the Australian, system, and most others, a peak white

Figure 3. The pattern of interlaced scanning. Compare this with the pattern on page 61.
signal is represented by about 12 p.c. modulation, peak black by about 75 p.c. modulation, while the sync. pulses occupy the "blacker - than - black" region between 75 p.c. and 100 p.c. modulation. In the receiver, it is relatively easy to provide a circuit which

Figure 5. A simple form of electronic scanning. A raster tiaced on the tube face is focused on to a transparency and then on to a photoelectric cell. Output from the cell becomes the video information.
oscillator, the vertical oscillator "runs will not respond to any signals lower free" after being triggered by the sync. than 75 p.c. but responds quite readily pulse.

The times during which the pulses appear at the end of each line and each field are called BLANKING PERIODS, and no picture, or VIDEO, information is transmitted during this time. The blanking periods appear as a black out, the reader may fairly ask how we border around the picture. Thus by rea- use an electron beam to scan the image

Figure 4. The relationship between video signal, line pulses and frame pulses. The five broad frame pulses are intergrated into one large pulse, while the spaces between them keep the line oscillator in step.

307 ELIZABETHI STREET, MELBOURNE - 60-1442
We have everything for the Radio Hobbyist

Output Range: $0-10,0-50,0-100,0-500,0-1,000$ Battery used: UM-3-1, 1 plece.
Dimensions: $31 / 4$ in $x 41 / 2 i n x 125 i n$.
Complete with internal battery, testing leads and prods.

PRICE \$11.95

Including Sales Tox
Plus Postage, 35 c .

CRYSTAL SET BUILDERS

Coils
 60 c

Diodes 35c
Headphones $\$ 2.50$
Tuning Conds \$1.85
TermsEa. 12c
Plus Postage.

TAPE RECORDER ACCESSORIES

KEW METERS

MR-2P 0-1 m/A $\$ 3.65$
MR-2P $0-50$ u/A $\$ 5.80$

MR-2P 0-100 u/A $\$ 5.30$
MR-2P 0-500 u/A \$5.50
VR-2P V.U. Meter \$5.80
MR-2P Stereo Balance \$5.25
MR-2P 0-20v. D.C. $\$ 4.00$
All meters in white plastic case.

PIEZO PICK-UPS AND CARTRIDGES

PU-86 Pickup LP/78 T/O Crystal cartridge. Length 204mmEa. $\$ 2.33$

Y700 Cartridge. Mon LP/78 \$2.00
PU-86 Pick-up Ster-LP/78.
T/O Cartridge. Length
204 mm
Ea \$3.65

SUB MINIATURE
I.F. TRANS, $7 \times 7 \mathrm{~mm}$

In sets of 3 .
$\$ 3.20$ per set.
OSC. COILS, $7 \times 7 \mathrm{~mm}$ To match I.F. Trans. $\$ 1.10$ ea.
5K SUB-MIN POTS, w/switch. 65c.
CO-AX MIC. CABLE
Grey P.V.C. Cover.
15c yd $\$ 14.50$ 100yds.

STANDARD THIN MIC. CABLE Grey P.V.C. Cover. $10 \mathrm{c} y \mathrm{~d}, \$ 9.00100 \mathrm{yds}$.

4c SHIELDED P/U FLEX
P.V.C. Covered,

25c per yd.

PIEZO MICROPHONE INSERTS

MC-3 Crystal. 50-7K. $35 \times 25 \times 8 \mathrm{~mm}$. -57 DB $\$ 1.10$ ea.
MC-7 Crystal, $100-7 \mathrm{~K} .39 \mathrm{~mm}$ Round x 11 mm . -56 DB. .. 90 c ea.
MC-8 Crystal, $50-8 \mathrm{~K}, 48 \mathrm{~mm}$ Round $\times 17 \mathrm{~mm} .-50 \mathrm{DB}$. $\$ 1.80$ ea. MC-9 Crystal $50-8 \mathrm{~K} .25 \mathrm{~mm}$ Round $\times 9 \mathrm{~mm}$. 68 DB. .. $\$ 1.80$ ea. MC-33 Crystal $50-10 \mathrm{~K}, 33 \mathrm{~mm}$ Round $\times 9 \mathrm{~mm}$. -60 DB. .. $\$ 1.10$ ea. MD-5 Dynamic. $100-15 \mathrm{~K} .33 \mathrm{~mm}$. Round $\times 14 \mathrm{~mm}$. -55 DB .. $\$ 1.80$ ea.

TRANSISTOR SET ACCESSORIES

Magnetic Earpiece with 3.5 mm Plug
Crystal Earpiece with 2.5 mm
Plug
Crystal Earpiece with 3.5 mm
Plug
Jacks, 2.5 and 3.5 mm
3.5mm Plug and Cord ext. Jack

Metal Co-axial Plugs and line
Sockets Pr 65c "Din" and "Hirschmann," 2, 3, 4 and 5 -pin Plugs, Chassis and Line Sockets, carried ex stock Prices on application.
P.M.G. type Plugs from 55c
P.M.G. type Jacks from 35c
P.M.G. Line Jacks from 55c
at the transmitter. One simple way is to use what is called a flying spot scanner, which has valuable, though limited, practical applications. In this arrangement the electron beam traces the raster on a fluorescent screen, exactly as in conventional cathode ray tubes. The screen is located behind a transparency of the image to be transmitted, and a photo-electric cell is placed in front of it. Thus the cell registers the amount of light passing through the transparency as each part is scanned, and the cell output becomes the video signal. (Figure 5.)
Naturally, this arrangement is limited to material which can be presented in transparency form and is of no value for "live" images collected' by a lens. To scan these wo need a very much more complex tube. A number of these have been developed, such as the ICONOSCOPE, the IMAGE ORTHICON, the VIDICON, and the PLUMBICON. It would be impossible to deal with all these basic types, and the variations on them, in a short article like this. However, a brief description of two of them may prove helpful.
A basic item in most picture tubes is an electrode which is referred to variously as a PHOTO-CATHODE, a MOSAIC SCREEN, a SIGNAL PLATE, or a TARGET. It commonly takes the form of a mica sheet several square inches in area and about .001 in thick. One side is coated with a continuous film of metallic silver. On the other side are deposited countless particles of metallic silver which are oxidised and made light sensitive by treatment with caesium. The particles are quite separate and insulated from each other. (Figure 6.)

There is obviously a certain capacitance between each particle and the back plate, so that the mosaic, in effect, can be regarded as an assembly of countless tiny capacitors, with one common plate, and every other plate photo-sensitive. Under the influence of light, a potential difference tends to build up between each of the silver particles and the back plate. If an image is projected on to the photo-cathode by ordinary optical means, the individual tiny capacitors tend to acquire a charge proportional to the light and shade of the picture.

The function of the tube is to scan these tiny charges, converting them into picture signals.

One of the earliest form of picture tube was known in America as the "Iconoscope" and, in England as the "Emitron." (Figure 7.)
The photo-cathode is mounted in the main body of the tube. The scene to be televised is focused through an ordinary lens system on to the light sensitive surface. Under the influence of the light and shade, the tiny silver particles emit electrons and begin to acquire a positive charge. The charge continues to build up, according to the incident light, until it is ultimately released by tha electron beam.

It is important to note that light falls on the photo-cathode all the time, and that the charging process by the minute capacitors is likewise continuous.

When the charge is ultimately released, it is quite substantial as a result, and this makes an important contribution to the sensitivity of the Iconoscope or Emitron.

Scanning is achieved by means of an electron beam generated in the neck of the tube. This beam is made to scan
the surface of the mosaic, line by line lected by a ring or metallic coating inin the manner already described. The side the body of the tube.

The most popular modern tube is the Image Orthicon. It has always been highly regarded, and the very latest versions are capable of superb results.

Physically the Image Orthicon looks

Figure 6. The heart of all camera tubes is some form of photosensitive mosaic. Each photo-sensitive element is small by comparison with an elemental area in typical systems.

Figure 7. One of the first practical camera tubes, the Iconoscope. Note the angle of the electron $g u n$ which presented both optical and mechanical problems.

those which have been emitted as a rather like a projection display tube, result of the photo-electric effect and being about 15 inches long and about discharge the tiny capacitors as it passes across them.

The resulting change in potential is naturally communicated to the common back plate and a voltage is generated across the load resistor "R." This is subsequently amplified, becoming the picture signal which modulates the transmitter. Primary and secondary electrons released from the photo-cathode are colfour and a half inches in diameter at the head. It employs a single photocathode like the Iconoscope of Emitron, but transparent to light.

The basic principles are illustrated in figure 8 .

Electrically, the Image Orthicon is divided into three distinct sections, an image compartment, a scanning section and an eleotron multiplier.

Figure 8. A simplified drawing of the Image Orthicon, one of the most popular camera tubes currently in use. Note the "in line" construction, which simplifies mechanical and optical design.

2 AMAZING "UNIVERSITY" INSTRUMENTS

MODEL MVA-4-General Purpose 20,000 ohms per Volt Multimeter

Brief Specifications:
D.C.V.: $2.5 / 10 / 50 / 250 / 1,000(20 \mathrm{~K} \Omega V)$ Accuracy: $\pm 3 \%$ for D.C. range A.C.V.: $2.5 / 10 / 50 / 250 / 1.000(8 \mathrm{~K} \Omega \mathrm{~V})$ Accuracy: $\pm 4 \%$ for A.C. range D.C.A.: $50 \mathrm{uA}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA} .250 \mathrm{~mA}$ Size: $6^{\prime \prime} \times 43-16^{\prime \prime} \times 2 \frac{1}{8}$ "

Ohm: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}, 10 \mathrm{M}$
$\mathrm{db}: \quad-20,+22,+20,+36$

PRICES

MODEL MVA-6-VACUUM TUBE VOLTMETER.
All "University" instruments are backed by full service facilities.
Brief Specifications:
A.C. Volts RMS-0-1,500 (in 7 steps)

Volts P-P-0-4.000 (in 7 steps)
D.C. Volts + and-0-1,500 (in 7 steps) Ext' to 30 KV with ext' Probe
Input res' 10 meg .
Ohms-.2ohms-1.000meg (in 7 steps)
DB-(ref' 1 mW in 600 ?)

$$
-20 \text { to }+65 \text { (in } 7 \text { ranges) }
$$

Accuracy: $\pm 3 \%$ for D.C.ranges

$\pm 5 \%$ for A.C. ranges

Size: $\quad 5 \frac{1^{\prime \prime}}{} \times 9^{\frac{1}{2}}{ }^{\prime \prime} \times 6^{\prime \prime}$

PLAY SAFE---use only INSTROL componenis in your

 PLAYMASTER 115 AMPLIFIERInstrol components are all best quality throughout, and made eccurately to the specifications laid down by "Electronics Australia.'
INSTROL PRINTED CIRCUIT BOARDS.
To make component assembly easy, Instrol pre-fiuxed printed circuit boards are clearly printed on the reverse side with a coded component location map. This corresponds with a separate componen ode shect. No guesswork, every component must fall correctly into place. For the crystal/ceramic version 3 boards are required (2 amplifiers, 1 pre-amp). The masnetio version requires one additional masnetic pre-amp board, PRICE: Crystal Pre-Amp
each
$\$ 2.00$ (plus Dostage 10c)
Main Amplifier, each
Masnetic Pre-Amp
$\$ 1.60$ (plus postage 10 c) $\$ 6.80$ Post Free

INSTROL METALWORK AND LABELS

The complete set of Metalwork comprises chassis with sub chassis and 2 brackets (cadmium plated and passivated) plus front pancl and case (oven baked hammer tone duco) Labels are high quality anodised, either gold with black lettering or simulated white with brown lettering.
PRICE: Chassis, sub chassis, 2 brackets
and front pancl (Less case) .. $\$ 9.19$ (Postage Extra $\$ 1.00$)
Case only $\$ 3.71$ (Postage Extra 75 c)
Complete set .. $. \quad . . \quad .$. KNOBS
Same as used on original, the set comprises 2 large and 4 small
RRICE. Set of $6 \ldots \quad \mathbf{~} \mathbf{5 1 . 2 8}$ (Plus 20c Postage) TIMBER CABINETS
We have produced a beautiful timber case for the 115, similar to that used on the most expensive imported amplifiers. Available in Teak, Walnut and Maple Vencers.
PRICE: Teak
Walnut and Maple
$\$ 17.50$ (Plus 50c Postage)
$\$ 16.50$ (Plus 50c Postage)

Light rays from the image are focused on to the transparent photosensitive mosaic. Electrons are emitted from the inner surface in proportion to the light and shade of the image. These primary electrons are accelerated away from the photocathode by an anode structure, and an extremely fine mesh-like grid, which carries a positive potential. The electrons pass through it at relatively high velocity and strike a second mosaic having high secondary emissive qualities.

The base for this secend mosaic is actually a film of glass one-tenth of 1 mil. thick. It is so fine that it is transparent to electrons and the charges which accumulate on the front can influence or be influenced by electrons from an electron gun at the rear. When electrons strike the front of the glass screen they create on it an electron image, equivalent in density to the visual image on the phetocathode. The impact of these primary electrons causes secondary emission, and individual particles of the mosaic acquire varying positive charges as a result.

The rear of the glass target is scanned by a low velocity electron beam, the electrons being slowed down just before they reach the rear surface. The beam gives up just enough electrons to neutralise the positive charges at each point of the mosaic, and the remainder of the electrons immediately reverse direction and return to a structure surrounding the gun. This structure is actually a form of electron multiplier which greatly ampplifies the variations in electron current from the target.
The Image Orthicon combines the outstanding features of all previous tubes and the result is a tube of high sensitivity and small size. The Image Orthicon also puts the gun, the mosaic and the image all on the same axis and eliminates the need for the obliquely mounted neck, as in the Iconoscope and Emittron. It avoids problems with trapezium distortion, clears the lens mount and makes possible the use of a lens turret.
Another type of tube in common use is the Vidicon. This is normally a small tube, about lin diameter, and is used extensively where the physically small camera and lens with which it can be used are of greater importance than some other factors. It also has the advantage of low first cost and relatively long life. On the debit side it suffers from limited definition and sensitivity and a tendency under low light conditions to retain an image for longer than is desirable. giving rise to smear on, rapidly moving objects.
In spite of these disadvantages it has found use in industrial and educational applications as well as in TV stations, where it is useful for presenting captions, films, etc. A more recent version of this tube. called the Plumbicon, has eliminated a lot of the Vidicon problems. and is currently finding a wide application, particularly in colour cameras.

Now that we have learned something of the practical aspects of scanning and camera tubes we are in a better position to consider typical standards as used in modern TV systems. Earlier, we introduced the "elemental area" concept. It is important to retain this concept, even though the subsequent discussion mav, have placed more emphasis on "lines" than "areas."

The number of lines in a (horizontally scanned) picture determines the vertical
resolution only. Horizontal definition is
a function of how many transitions from black to white can be accommodated in a single line. As a rough approximation we may consider that, for a square picture, we need as many elemental areas per line as there are lines in the whole picture.

As an example, consider Australia's 625 line system. Allowing for lines lost during the blanking period at the end of each frame, we have about 590 actual lines in each picture. Since the picture is wider than it is high by the ratio $4: 3$ we should provide 590 x $4: 3$, or about 790 , elemental areas in each lin'e. Multiplying this by the 590 lines we get about 460,000 elemental areas per picture.

What governs the number of elemental areas which we can provide
enough to accommodate such an order of modulation, which must be at least several times the modulating frequency. This fact, plus the space which such a signal must occupy, automatically dictates nothing less than the VHF bands, from about 50 MHz to 300 MHz . Even here spectrum space is precious, and every effort is made to reduce the needs of the TV transmitter as much as possible.
One trick is to employ a form of single sideband transmission (VESTIGIAL SIDEBAND), where as much as possible of one sideband is suppressed. Ancther is to accept some compromise between the number of elemental areas we would like to transmit and the minimum number which will noticeably degrade the picture. In the Australian

Modern television systems play many roles apart from entertainment. Industry, research, medicine and education all make extensive use of this facility. The picture shows a studio belonging to Britain's Educational Television Service, designed to serve 1,300 centres in inner London.
in one line? In simple terms it is a function of how rapidly we are able to switch the picture tube electron beam
on or off representing an abrupt transition from black to white. The electron beam itself will respond at almost any speed we like to nominate, the real limitation being the signal we apply to it. This, in turn, is limited by the high frequency response, or BANDWIDTH, of the entire system.

In the example just cited we have 460,000 elemental areas in cne picture, which we must transmit completely 25 times a second. Thus we have to transmit $460,000 \times 25$, or about 11.5 million, elemental areas each second. If we consider the extreme case where adjacent elemental areas are alternately black and white it can be shown that we can transmit two elemental areas per cycle of video signal. So, to transmit 11.5 million elemental areas per second we would need to transmit 5.75 million cycles per second (5.75 million Hz or 5.75 MHz). Transmitting a signal of this kind presents a number of problems. First we
have to provide a carrier frequency high

7 MHz for each TV channel, which has also to accommodate the sound channel.

Within this we provide a video bandwidth of about 5 MHz , which is only a little less than the theoretical ideal. However, this order of performance is seldom matched by the receiver, which would be regarded as quite good if its bandwidth extended to 4 MHz . Nevertheless, the end result from a good TV set can be very satisfying if the original material is good.

Other systems vary from this standard. The American 525 line system has both less lines and less elemental areas, so must be regarded as marginally inferior, even though this may not be really serious in practice. On the other hand, some European 625 line systems are better than the Australian system, in that they provide a greater bandwidth and therefore come closer to reproducing an ideal number of elemental areas.
This covers most aspects of TV transmission and is all we can discuss in this chapter. In the next chapter we will decribe the other end of the link, the receiver.

TRUVOX R102 (\$226) AND R104 (\$236)

TWO AND FOUR TRACK

 MONO RECORDERSFeaturing three heads, three motors and three speeds, the Models R102 and R104 have been very favourably reviewed overseas. Frequency response at $7 \frac{1}{2}$ i.p.s. is $30-17,000 \mathrm{~Hz}$. plus or minus 2 db. Separate record and play-back amplifiers. VU meter. Write for complete specifications
and copies of reviews R-104
\$236

TRUVOX STEREO TAPE UNITS MODELS PD 102 and PD 104

With four independent pre-amplifiers. complete mono and stereo monitoring facilities are provided on the new TRUVOX PD-102 and PD-104. Twin VU meters. Mixing buttons for sound on sound. Separate solid state record and playback amplifiers. Three notors, including papst drive motor, three speeds. Sensitivities match any ancillary equipment of any make. Frequency response - $30-17,000 \mathrm{~Hz}$ at $7 \frac{1}{2}$ i.p.s. - plus or minus $2-\mathrm{db}$. Signal to noise is better than 50 db . Input sens. are Radio Microphone $-1 \quad \mathrm{mV}$ at 50 k ohms, ohms.
Write for complete specifications and copies of reviews; both the PD 10212 track) and PD 104 (4 track) are
now in stock PD102 \$246 PD104

TRUVOX R44

SEMI-PROFESSIONAL RECORDER
A brilliant new fully transistorised recorder or 240 V AC operation. All controls interock. VU meter provides positive indication of recording level. Three speeds, $7 \frac{1}{2}-3 \frac{1}{4}-1 \frac{2}{2}$ i.p.s. Takes $7^{\prime \prime}$ spools. Frequency response is $40-15.000 \mathrm{~Hz}$, plus or ninus 3 ab . at $7 \frac{1}{2}$. i.p.s. Signal to noise is better than 46 db . Output is conservatively rated ${ }^{\text {at }}{ }^{3}$ watts R.M.S. (6 watts peak) into a 15 ohm load. i.p.s. Independent microphone and radio/ i.p.S. Independent microphone and radio/ is hereby simplified. Eleven transistors and two rectifiers. See the review in "Amateur Tape Recording", Oct., 66, and "Audio and Record Review" Aug.. 66. Encel price
$\$ 139$

NOW AVAILABLE
 TRUVOX TAPE DECKS!

At last the rugged and proven TRUVOX tape decks are available in Australia in mono and stereo, two and four track configuration and Encel prices are most attractive. No longer need you wait to have your tape recorder. look at these prices! These decks are identical to those used in the models R102-4, PD102-4.
D102 two frack mono $\$ 89$
D104 four track mono
Replays stereo tapes
D106 two track stereo
D108 four track stereo
$\$ 99$

GET THE ENCEL FACTS

Pamphlets and technical specifications usually available for most Encel merchandise. Write or call for further information.

NEW KELLY $15^{\prime \prime}$ WOOFER SPEAKER (Mk. VII)
Rated at 50 watts, the frequency response of his new bass reproducer is $30-5000 \mathrm{~Hz}$. Total flux is 350,000 maxwells. Recommended crossover frequency is 2500 Hz . (The Kelly Crossorer costs \$11). The Mk. YIl uses a embedded in polyester resin. \$0
Guitar models also available at the samie price $1>010$

THE MK. II KELLY RIBBON TWEETER

Regarded as the most effective and advanced tweeter available for domestic
speaker systems, the Kelly Mk. II s priced at only

KELLY ACOUSTIC LENS

Designed for use with the Kelly Mk. II

NEW MODEL 12" BASS REPRODUCER FROM

DECCA-KELLY . . . THE DK I!

This 12 " woofer is the model used in the Kardioid enclosure; total flux is 250.000 maxwells due to use of a nev ceramic ring mag-$30-5000$ Magnadur 2". Frequency response 1. requency is 2500 Hz . The voice coil is $\mathbf{c m -}$ bedded in polyester resin - transient peaks of 100 watts will not damage the assembly. Normal power rating
is 35 watts R.M.S. Encel price
$\$ 48.50$

DECCA-KELLY KARDIOID KITS

In order to reduce prices the Kardioid is now available in component form. The Model DK1 bass reproducer. Mk. II Kelly Ribbon Tweeter, Acoustic Lens and Crossover Network are supplied. Detailed construction instructions and illustrations of the enclosure
are provided. Total price: $\$ 109$. Cabinets are are provided. Total price: $\$ 109$. Cabinets are available if required - polished and unpolished. Ask for details. Components only
$\$ 109$

DUAL TURNTABLES

DRASTICALLY REDUCED:
Model 1019 - This popular turnable/tone arm and cartridge combination s normally priced at $\$ 139$.
$\$ 89.50$
Model 1010A - Automatic record changer. Normal price is $\$ 69.80$. Now selling
$\$ 52$

HAND CRAFTED "SONICS" SPEAKER SYSTEMS
A wide range of multiple speaker "Somics" speaker syatems is now available and prices are as low as $\$ 19.50$. Onte of the most popular would be the AS-6.3 which features "t hass speaker and a 3^{3} diameter tweeter. Size is lif oiled teak or "walnut \$39.50 and price is only -40 Also Models AS-40..... AS-61 \$35.50. AS-302 $\$ 47$.

NEW UNOBTRUSIVE DYNAMIC MICROPHONE
The robust, pint sized dynamic microphone. the Piezo Model DX75. is supplied with a desk stand. Dual impedance is 50 k ohms and 50 ohms. Ideal for tape re-
corder applications. Exceptional
val
High impedance (50 k) only $\$ 6.90$

MICRO TONE ARMS

Few products have been received by the purclasing public quite as enthusiastically as MICRO tone arms and cartridges formance easily justifies the use of the hest available amplifiers and speaker systems. Finish is impeccable - MICRO precision engineering is without equal in this price and SME shells: vertical and lateral friction and sme shelis; vertical and lateral friction is estimated at less than 20 milligranns. Model and MA 77S (12") are Encel priced at \$29.50. Read the revicws in your April '66 copy of Electronics Australia"

February 1966 and in ${ }^{\bullet} \mathrm{Hi}-\mathrm{F}$ for copics of ticse 1966. Ask
$\$ 29.50$

MICRO DUST PICK-UPS
This most effective record eleaner automatically removes dust and static charge $\$ 3.50$

LOW PRICED CERAMIC CARTRIDGE FOR BUDGET
 CONSCIOUS MUSIC LOVERS!

Now the well known Micro Model SC301 Ceramic Stereo Cartridge with diamond stylus is available for only $\$ 6.90$. Frequency response s $20-15.000 \mathrm{~Hz}_{15}$. plus or minus 3 dB Tracking angle is 15°. This popular
stereo ciartridge is A1 value stereo cartridge . is A1 value
at
$\$ 6.90$

NEW ZENZA BRONICA CAMERAS
The most famous 2 2 squ. reflex cameras in the world would be the Hasselblad and the Zenza Bronica - but only the latter has incomparable Nikkor lens equipment and a focal plane shutter. In consequence supplementary lenses are much lower in price
The new model S2 Bronica has a detachable film back enabling change of film type in a few seconds and is attractively priced at $\$ 299$ complete with f 2.875 mm . lens. The model C 2 sells at only $\$ 245$. Both prices include sales tax. Encel Electronics Pry. Ltd. is the Australian Agent for Zenza Bronica. Ask for prices on the multitude of supplementary lenses and accessories. Encel prices are less than $\frac{1}{2}$ U.K. prices and less than ${ }^{3} \mathbf{k}$ U.S. prices for identical cameras.

Model S2-\$299
Model C2-\$245
THE NEW ORTOFON S-15 STEREO CARTRIDGE AVAILABLE AT ALL ENCEL STEREO CENTRES!
World wide acclaim provides significant testimony to the outstanding performance of the new S-15. Ask for an EMQ.

COMPATBIE SIMGE-SIDEBAND MODULATON -tests over station 40 G

disadvantage which CSSB exhibits in respect to DSB due to this effect.
Thus there are two effects of the recoiver filter, one improving the reception of CSSB compared with DSB, and one degrading it.

Each broadcast consisted of one hour of selected music played after midnight on eight occasions. This hour was split into two separate half-hour tests. In each test, 15 minutes of eadh type of modulation was transmitted, the listener not knowing the order in which each was used. In this way listener bias was eliminated. The listeners were then invited to choose which part of each test they

A research program was undertaken at the University of Queensland to study Compatible Single Sideband Modulation with a view to a practical system which could be adopted to a transmitter for broadcasting. After the initial tests on a model system had proved the feasibility of CSSB broadcasting, an approach was made to the P.M.G. and the A.B.C. requesting their co-operation. These departments readily made available their transmitter and program recording facilities for the tests.
The model CSSB system was modified to enable audio frequencies up to 10 KHz to be used, and this was connected to the 4 QG standby transmitter as shown in the diagram. The output power of the transmitter is 2 KW and its frequency 790 KHz .
The CSSB modulator consists essentially of a phase modulator. The phasemodulating signal is derived from the audio signal in such a way that when the resultant phase-modulated carrier is amplitude modulated in the usual way, a single-sided spectrum is obtained, which has a bandwidth approximately equal to that of the audio signal. Since a form of amplitude modulation is used. the signal can be detected with an ordinary linear diode envelope detector, and is thus "compatible" with existing broadcast receivers.
The phase modulating system is produced by generating a full-canrier singlesideband signal (which has envelope distortion) then limiting this and detecting its instantaneous phase. This phase signal is then processed and used to phasemodulate the transmitter carrier. The oarrier is derived from the transmitter's exciter, and hence is crystal-controlled at the correct freauency. By switching off the phase-modulating signal, an instant changeover from CSSB operation to D.S.B. (double sidebanid) operation can be achieved.

The on-air tests were designed to compare the quality of reception of DSB and CSSB. Since the envelope is imposed in both cases by the same amplitude modulator, they are identical and exact. The onlv difference in the transmitted signals is their spectra. A difference in reception quality will occur however. due to the influence of the receiver filters in the RF and IF stages.

Two different effects occur. Since most commercial radios have IF banldwidths of about 10 KHz , only 5 KHz audio will be received using DSB. However, with CSSB, since the bandwidth is approximately equal to the audio bandwidth, a receiver with 10 KHz IF bandwidth will receive audio frequencies up to 10 KHz .

Thus, it is seen that for most receivers, a gain in fidelity is possible with the use of CSSB, with an accompanying increase in the quality of reception. The

University of Queensland
Compotible Single Sideband System
other effect involves the shape of the IF filter. If a DSB signal is passed through a filter symmetrical about the carrier (not necessarily flat over its band). no distortion of the envelope will occur, only a change in modulation depth. However, if CSSB is passed through a filter which has not a flat response, some distortion of the envelope will occur.

However, since the passband in most receivers is not symmetrical, some distortion of the envelope in DSB reception will be present, tending to reduce the
preferred, and the reasons for choosing it, and in this way an indication of the comparision between the two systems was gained.
The results were very encouraging, and it can be said, with about 95 per cent certainty, that CSSB reception was as good and probably better than DSB reception. With its bandwidth-saving advantage, it thus appears that CSSB could bo a worthwhile solution to some of the interference problems being experienced in Australia today.
more than 500 switches

Please write or phone for copy of latest broadsheet listing current stock types.
MANUFACTURERS SPECIAL PRODUCTS PTY. LTD. 47 York Street, Sydney. 20233
ADELAIDE: Newton McLaren Ltd. 51.0111. BRISBANE: Chandlers Ltd. 31.0341. HOBART: Amalgamated Wireless (Australasia) Ltd. 3.3836 LAUNCESTON: Amalgamated Wireless (Australasia) Ltd. 2.1804 . MELBOURNE: J. H. Magrath \& Co. Pty. Ltd. 32.3731. PERTH: Atkins (W.A.) Ltd. 21.0101 : Carlyle \& Co. (1959) Pty. Ltd. 21.9331. SYDNEY: Electronic Parts Pty. Ltd. 560-7566; George Brown \& Co. Pty. Ltd. 29.7031; Broadway Electronics Pty. Ltd. 211.4224.
in the current Cutler Hammer Appliance type Switch Catalogue - a design for every purpose and an unsurpassed reputation for reliability.

ORTOFON
 MOALD LEADERS IN TORE ARM AND CAPTPIDGE TECMNDLDGY:

The audio enthusiast seeking the ultimate in high-fidelity reproduction can purchase ORTOFON arms and cartridge with complete confidence for the most realistic high-fidelity sound originates with ORTOFON. The new ORTOFON S-15 series cartridge has been acclaimed by critics all over the world. Tracking angle is precisely 15° and the most complex wave form may be traced at $11 / 2$ grams stylus pressure; the superbly polished elliptical diamond stylus is fully protected should the cartridge be accidentally dropped to the record surface.
Specifications -
Frequency response: $20-20,000 \mathrm{~Hz} . \pm 2 \mathrm{~dB}$.
Static compliance: $20 \times 10^{6} \mathrm{~cm} /$ dyne.
Channel separation: $20-30 \mathrm{~dB}$.
Stylus: 0.0007×0.0003 elliptical diamond.
Equivalent mass: 0.9 mg .
The ORTOFON elliptical diamond stylus closely approximates the shape of the original cutting stylus, and will track without distortion due to pinch effect . . . this freedom from distortion being obvious towards the label where pinch effect is always a problem.
Illustrated is the popular SMG-212 tone arm fitted with the " G " shell. ORTOFON tone arms are available in nine models. When the openfront metal " G " shell is used any cartridge may be fitted.
We invite you to listen to ORTOFON today at your favourite hi-fi supplier; listen to the astounding difference!

[^3]

Conducted by the Editor

Among the many who have expressed interest in the matter was a reader who took the trouble to ring from interstate. He confirmed that training in the Armed Services laid a good deal of emphasis on the hazards of radioactivity and agreed that this emphasis may well have been responsible for a gross exaggeration of the danger (if any) from radioactivity in small thermionic valves. But while he was apparently inclined to this view, he was certainly far from being sure of himself.

And, from Gcondiwindi, Queensland, a correspondent, L.B., writes in the following terms:

Dear Sir,

"I refer to the item Radioactivity hazard' in Forum for the June issue. I have read much on this subject. Other hazards are X-ray radiation from operating EHT rectifiers, beta radiation from cathode-ray tubes and poisoning from contact with sulphides from domestic fluorescent tubes.
"My big oriticism is that no one has, as far as I know, bothered to give details or symptoms of effects of this type of injury.
"In 1952 I was badly cut by a fluorescent tube and, having read a warning about such an injury, I consulted a doctor. He was as well advised about it as you are!
"In consequence, I developed a skin disease which was diagnosed as psoriasis. However, all agree that it doesn't fit the usual pattern but there is one factor which proves it is psor-rasis-it is incurable!
"I feel that there is room for continuation of this article. How about a tinuation of this article. How about a
statement from the Armed Services?"

I reprint this letter even though, in terms of the immediate subject, it contains certain "red herrings." It does, however, relate the subject to human values.

First and foremost, radiation from EHT rectifiers and cathode-ray picture tubes has been the subject of considerable observation and discussion. Nor is it just a question of guesswork or opinion; the strength of such radiations can be measured and evaluated. By those who have done so, there appears to be common agreement that the radiation level from ordinary monochrome television receivers is of such an order, relative to the ambient, that it can pose no likely hazard to anyone, from viewers to TV servicemen alike.

The radiation from colour television receivers is a little higher, by reason of the increased EHT, but still well short of the danger level in domestic situations. Again, this has been the subject of considerable observation and, just recently, certain receivers in the U.S. were recalled for modification-just in case.
As for the alleged connection between
a broken fluorescent tube and psoriasis, I am not competent to pass an opinion, or on whether there is a further connection between the substances used and the original subject of radioactivity. It may well be that, in toto, the hazard from a broken fluorescent tube is far greater than from radio valves of any description. A fluorescent tube is certainly larger, more fragile and more liberally coated with fluorescent powders.

To change the subject, I received recently an interesting letter from Mr Harvey Gernsback, publisher of the American magazine "Radio Electronics." The letter is self-explanatory:

Dear Mr Williams,
"In reading the April issue of your alway's interesting journal, I noted in your department 'The Answer Man Explains' a discussion about the fidelity of long-playing tapes. I missed the original discussion in your January issue.
"There is a small difference in high frequency response between the standard and so-called extra-play tapes, but there is a very marked difference between the response of standard tapes and the triple-length tapes, as you can see from the specification sheets which the 3 M Company puts out here in the States. Since their tape specifications are pretty generally followed by other manufacturers, I presume that they probably apply in Australia, too.
"The Scotch brand standard tape is No. 111. Their long playing is either 150 or 190 , depending on whether it has an acetate or polyester backing, and their type 200 is a double-l'ength tape. The electrical characteristics of the 150,190 and 200 are substantially identical and show a high frequency sensitivity approximately 3 dB greater than the standard tape. This assumes that the bias of the recorder has been readjusted to optimum bias for these tapes. If the bias is adjusted to the optimum for the 111 tape, the electrical response of the 150,190 and 200 will be substantially the same as 111.
"On the other hand, with the 290 triple length tape there is an 8 dB difference in high frequency sensitivity,

Technical writing

Further to your Editorial, "ELECTRONICS Australia", May, 1967.

The low standard in technical writing is not confined to higher echelon professional engineers.

After multiple attempts at digesting the contents of numerous manufacturers' equipment handbooks, the brainchild of the so-called "Technical Writer," one inevitably reaches the conclusion that the majority of these gentlemen are non-technical and illiterate to boot!
E.W. (Carlton, N.S.W.)

ONLY $\$ 1.00$ AND A GREAT INVESTMENT

36 PAGES

QUARTO

A COMPLETE TECHNICAL GUIDE TO M.A.T.V.

(MASTER ANTENNA TELEVISION DISTRIBUTION SYSTEM FOR hotels, Motels, APARTMENT BUILDNGS, SCHOOLS, HOSPTTALS AND DEALER SHOWROOMS.)

M.A.T.V. is big business today. This manual is a thorough guide to Systems Planning. Many charts and actual examples of systems are detailed together with loss factor calculations and a full explanation of trade terms and accessories. Send for this manual. It could open up a new business for you.

POST COUPON OR PHONE 93-0221

regardless of whether the bias is adjusted for the 111 standard tape or for the 290. According to 3 M , the 290 tape was not designed to be used on wide-range equipment but rather was designed for popular priced equipment, and its exaggerated high frequency reponse is supposed to compensate for inadequacies in high frequency response of the cheaper recorders. On a high quality machine it is very difficult, if not impossible, to adjust to flat response with the 290 tape since you tend, as your correspondent suggests, to get a peak response at around 10 kHz .

4 Younger Reader

From one of our younger readers omes a letter setting out the problems f junior but avid enthusiasts and reuesting circuits for devices using batery valves. We quote:

Dear Sir,

"I am aged $13 \frac{1}{2}$ and very interested in radio and electronics. In 1965 I entered a project in the Science and Talent Search conducted by the Science Teachers' Association of Victoria. I named the project 'The De velopment and Construction of My Crystal Set,' and won a prize of $\$ 4$.
"I have repaired several crystal sets, which were given to me when out of order, and have repaired quite a few electrically operated toys for my friends, also a transistor radio which had a broken resistor and a broken condenser lead.
"But, as a member of a family of eight children I find it hand to buy electronic parts. By saving up for a long time and with dad's help, I managed to get a Philips EE20 kit for Christmas and have had lots of fun with it, and still do.
"But I would like very much to get more gear to work with, so that I can learn about electronics. Sometimes I am lucky enough to collect old battery and AC radios and dad gets me some, too. I have dismantled most of them and saved lots of parts.
"Dad lets me use his Scope soldering iron and multimeter. I am not yet allowed to make any AC mains projects but am allowed to use two Philips battery eliminators, so far only when dad is around - I hope to be 'promoted later on.

While I have saved all the parts I can, some of them are hard for me to work out. Sometimes valve numbers are rubbed out and the impedances of loudspeakers and transformers are missing. I have no way of testing these items. The manufacturers should brand them properly. Coil kits are a problem, too.

- Besides making up all the projects possible with my Philips kit, some of them many times. I have built a onevalve radio, from your 'Reader Built It' in October, 1956; a Morse-code oscillator from a circuit in a library book; a three-valve radio described in your magazine for February, 1953. All of these used battery valves.
"I have looked all through dad's collection of ' R, TV and H,' and 'ELECTRONICS Australia' magazines from January, 1959, along with odd earlier ones, but I cannot find enough battery valve projects. So I have been looking for them in the

Warrnambool Library, but the projects from England do not always give details about the coils. I would like to see more projects in 'ELECTRONICS Australia' for battery valves."
P. R. (Warrnambool, Vic.)

One of the pleasing things about this letter is the natural reference to "Dad." In an era when so many voices are proclaiming a rift between generations, it is refreshing to observe situations where the old-fashioned relationship is maintained.

Again, the young correspondent's struggle to find parts and circuits strikes a familiar chord. In our relaxed moments, Associate Editor Phil Watson and I reminisce occasionally on the way we had to "scrounge," as country school-children-not forgetting those medicine bottles which were "doctored" to become the containers for a battery of Leclanche cells. I wonder how they would go in a modern wall-to-wall home -those bulky generators of volts and green slime?
What happened to all the battery valves and to sets and circuits using them?

Answer: They were abandoned-more swiftly than any other electronic technique that I can recall.
The fact is that valves designed to operate from batteries never were anything but a precarious compromise between performance on the one hand and economy of operation on the other.

With the appearance of transistors and the rapid postwar proliferation of AC power mains designers dropped battery type valves like the proverbial hot potato and the public seemed to discard receivers using them in like manner.
Our readers certainly reflected a complete lack of interest in battery-valve circuits, simply on the basis that they could buy transistors for the same kind of money that they would otherwise spend on batteries.

The question of manufacturers branding individual components in their receivers is an old one and any remarks we might make on the subject are not fikely to change the position to any degree.

First and foremost, manufacturers don't make their sets to be stripped down and one can hardly blame them if they don't pay too much attention to the desires of people who may later want to use the parts. If there is a point here, the people to consider would be servicemen, who have to identify parts for replacement purposes.

A fundamental fact is that equipment manufacturers do not buy parts "over the counter," identified and/or packaged for individual sale. They order by the hundreds or thousands, and there is usually a definite saving in buying parts packaged in bulk, with a minimum of external coding. Ordinary stock and assembly-line procedures avoid difficulties at the factory and it is only later that problems of identification arise.

Even then, it is much easier for a serviceman to order "Part No. 1234" than to quote a model and serial number and try to identify the component from it that he needs.

In short, while not defending inadequate identification, or type numbers that rub off, we have to point up the difference between parts offered for sale and those used in manufactured equip-

60SIMPLE ELECTRONIC PROJECTS YOU CAN BUILD NOW!
How would you like to make a 2 -transistor Radio, an Intercom Unit, a Burglar Alarm, Electronic Thermometer, Stereo Headphone Amplifier, Short Wave Radio, Electric Fence or any one of 60 exciting, easy-to-build projects? IT'S EASY THE S.E.W. KIT WAY. * All Kits Transistorised and use special printed Circuit Boards.

NEW RELEASE

6 Transistor Radio Kit, complete. Incl. instruction manual-\$17. Incl. Tax.
Wired and Tested $\$ 19$.

$$
\$ 32.50 \text {. }
$$

TRANSISTOR MODULES

Unit 1. 10/20 Amplifier, 10 Watt into 1.5 Ohms $20-20 \mathrm{kc} / \mathrm{s}$ 12 V supply, $\$ 15$. Plus Tax, OR 3 Watt, \$9. Plus tax. Unit 13. 10 Watt RMS Continuous. 15 Ohms, 40 V Supply, $\$ 21$. Plus Tax. Also $25 \mathrm{w}, 35 \mathrm{~W} 75 \mathrm{~W}$, RMS Amplifiers, 8 Ohms. From \$44. Plus Tax. Also 50W Guitar Booster Amplifiers.

Unit 10A TRANSISTORISED. Tuners: Bandwidth $8 \mathrm{Kc} / \mathrm{s}$ With Power Supply $\$ 23$ plus 25% Tax. With RF Stage $\$ 33$ plus 25% Tax.

TAPE RECORDER KITS
Unit 14, TAPE PRE-AMPLIFIER, Unit 15. $60 / 90 \mathrm{Kc} / \mathrm{s}$ Push/Pull Transistorised Bias. Erase Oscillator Module. Unit 16. Transistor Tape Recording Amplifier Module. Used with Unit 14. 12 V Transistorised P.A. Amplifiers from 3 W to 50 W from $\$ 9.50$. Plus Tax.

TRANSISTORS AND DIODES AT SPECIAL PRICES.
BC107, $\$ 1$; AF114, 95c; AC125, 90c; BC108, 90c; AF1115, 95c; 2N301, $\$ 2.50$; BC109, $\$ 1.30$; AF116, 90 c ; OC74, 95 c . Also Components, Tape, Films, etc. Send S.A.E. for Details and List.
S. E. WILLIS TRADING CO.

38 RIVERSDALE RD., CAMBERWELL, E.6., VICTORIA. 82-5787.

PALACE 8.WATI STEREO AMPLIFIER

SPECIFICATIONS:

- Output Power: 8 Watts, 4 Watts per channel. Frequency Response: 60 to $15,000 \mathrm{cps} \pm 1 \mathrm{db}$. . Harmonic Distortion: Less than 3 per cent. - Hum and Noise: 52 db below rated output. ${ }^{-}$Sensitivity: Phono (Crystal) $100 \mathrm{mV} \quad 250 \mathrm{~K}$ ohm Tuner 100 mV . Tube Complements: 12AX7 x 1, 30A5 x 2, 1S315 x 1 (Silicon Rectifier). Dimensions: 98 in $\times 64$ in x 3in. Weight: 5.11b.

Price $\$ 32.50$

MODEL M6 FOUR CHANMEL TRANSISTORISED MICROPHONE MIXER

All four inputs accept standard two circuit Phone Plugs, while the output jack accepts a standard circuit Phone Pin Plug.

SPECIFICATIONS:

- Input Impedance: "Hi" Impedance for Crystal Microphone, etc. Gain: Approximately 6 db . Maximum Input Signal: 1.5 volts. Maximum Output Signal: 2.5 volts. Output for Minimum Disturtion: 2 volts. - Hum: 0. Battery: 9 volts.

Price $\$ 6.75$
BELPHOME HOUSE
TELEPHOHE

Complete with batteries and 50ft connecting wire. May be used further apart if desired by using heavier connecting wire.
Colors Available-Ivory, Red and Black $\$ 13.50$ Sef of two

Please Note: Clarence St., city, and liverpool Stores are open Saturday mornings.

KALTRO SVC TV.RADIO REMOTE CONTROS LISTENER

This TV-Radio Remote Control Listener is a combination of an extension speaker and a remote control station to regulate the sound of both the TV, Radio, Phono, or Hi-FI set and the speaker incorporated in the Listener itself. In addition, up to two earphones can be attached for listening to the sound of the TV, Radio, Phono, or Hi-Fi set without disturbing others around you. Unwanted commerclals can be easily cut off by merely turning down the control of the TV-Radio Re. mote control Listener. A modern designed plastic cabinet with easily ad. justable fingertlp controls Ideal for use in home, office and business. Complete with earphone, 20 ft of lead wire and installation instructions.

Price $\$ 8.75$
 CHEST OF DRAWERS

Three types of Galvanised Chests measuring $171 /$ in $x 69 / 4$ in $\times 11 \%$ in, containing 16 drawers, each measuring $6 \frac{5}{8} \times 33 / 4$ in $\times 21 / a i n$.

- TYPE C.D.1. With 16 undivided drawers.
- TYPE C.D.2. With 16 triple compartment - TYPE C.D.2. With 16 triple compartment
- Trawers, $\mathbf{\$ 8 . 0 0 .}$ With 8 triple compartment TYPE C.D.3. With 8 triple compartment
drawers, and 8 undivided drawers, $\mathbf{\$ 8 . 0 0}$. The Chests are finished in blue hammertone stoving enamel, are complete with identification cards and packed in strong corrugated cartons. Provision is made for all units to be bolted tosether in tiers.

CHEST OF DRAWERS TYPE C.D.4.

A $17 \frac{1}{3}$ in $\times 6 \frac{1}{4}$ in $\times 117 / a$ in Galvanised Chest containing 4 full-length drawers each measuring $153 / 4 \mathrm{in} x 63 \mathrm{~min} x \quad 2 \frac{1}{\mathrm{~h} i n}$. Finished in blue hammertone stoving enamel. \$7.00.

WRITE FOR FREE CATALOGUE AND PRICE LIST OF TOOL BOXES AND CHEST

"PIPGRAS" HOLE PUMCHES

"PIPGRAS" Hole Punches are made from Alloy Tool Steel, and cut clean and accurate holes in sheet metal. They make a smooth. perfect hole without reaming or filing.

SCREW TYPE, ROUHD

Supplied with "UNBRAKO" High Tensile Socket Screws and Wrenches. Cut holes in sheet metal up to 18 gauge.

Type Nominal Actual Wher Pipe Pllot Price No. Size Size Stze (I.D.) Drill Size Each

$32 . S$	1/2in	0.507 in		1/4in	2.17
S	2/3in	0.618 in			

$\begin{array}{llllll}\text { 48.S } & 5 / 4 \mathrm{in} & 0.618 \mathrm{in} & 1 / 4 \mathrm{in} & 5 / 16 \mathrm{in} & \$ 2.17 \\ & 0.742 \mathrm{in} & 1 / \mathrm{sin} & 5 / 16 \mathrm{in} & \$ 2.80\end{array}$

 88.5 13/8in 1.382 in Iin $7 / 16 \mathrm{in}$ \$5.97 With Heat Treated, High Tensile Steel Hex. Head Bolt and Nut.

Cut	holes in sheet metal up	to 16	gauge.		
$96 . S$	$11 / 2 \mathrm{in}$	1.512 in	$9 / 16 \mathrm{in}$	$\$ 6.69$	
$112 . S$	$13 / 4 \mathrm{in}$	1.762 in	$11 / 2 \mathrm{in}$	$9 / 16 \mathrm{in}$	$\$ 7.60$
$128 . S$	2 in	2.014 in	$11 / 2$ in	$9 / 16 \mathrm{in}$	$\$ 8.33$

MAHUALS

TRANSISTOR MEGAPHONE

Miniature and handy. Can be used anywhere by anybody. Megapet PM-77 Transistor Megaphone . . Transistors: 3 pcs. Battery: Dry Cel $\begin{array}{lcl}\text { (UM-)3 } & 8 & \text { pcs. Acoustic Range: } 100 \text { metres. } \\ \text { Height: } 98 \mathrm{~mm} \text {. Width } 68 \mathrm{~mm} \text {. Overall length: }\end{array}$ 170 mm . Weight: 550 g . (with batteries).

Price $\$ 18.90$

MODEL SB-401 PLASTIC CABINET
Complete with 4in speaker.
Price $\$ 4.00$

GENERAL ACCESSORIES
 Trade Inquiries Invited

"NEW LOOK" FOR THE EVERPPOPULLAR UNIT-4

For over five years, since May, 1952, the "Unit Playmaster No. 4" has been a sales leader among kits-a single unit stereo amplifier with excellent performance, full tone control facilities and a power output of about 10 watts per channel. With minor revision to its controls and its input and output facilities, it can take its place alongside the most modern solid-state equivalents.
the 115 and the transistor control unit which preceded it.

Behind the panel, the components have teen laid out on the same chassis as is standard for the 106 Playmaster tuner/amplifier. Use of the same chassis is intended to assist the parts suppliers and the space not used for a tuner is available for a solid-state magnetic pickup preamplifier, should this be required.

At the rear of the chassis, we have rearranged the connection facilities to provide for tape input/output, as well as for pickup and radio tuner.

Underneath, the wiring has been rearranged to make things even simpler

Two months ago, when we set about resenting the "All-Silicon Playmaster 15," we made no secret of the fact that is specifications were patterned on those rhich had proved so popular with the riginal No. 4 Unit Playmaster; sensiivity to operate from good quality eramic pickups, full control facilities, ood performance, a power output of bout 10 watts per channel, straightorward construction and a general ecoomy of design. The 115 met these reuirements, within the framework of resent-day solid-state techniques, with he option of an in-built preamplifier or low-output magnetic pickup cartidges.
But the release of a solid-state ampliier does not, by any means, indicate hat valve amplifiers have "had it." For 11 practical purposes, the performance igures of the basic No. 4 valve design re the same as those for the solid-state ersion. It can have the same control nd intput/output facilities, will fit into he same size case and can, if necessary, e provided with a similar preamplifier or magnetic pickup cartridges. To be ure, valves aren't quite as modern as ransistors, and they operate at higher emperatures but, against this, many enhusiasts will find this amplifier somevhat easier and cheaper to build than he 115 all-silicon design.
In fact, it is not our purpose to try o "sell" one design or the other. On he contrary, we have quite deliberately rranged for them to be virtually idenical in external appearance and perormance. Those who are looking for a olid-state design, with its air of modrnity, will naturally choose the 115 .)thers, who may prefer to stay with the echniques they understand better may refer the new 118 , as we have designated he restyled No. 4. The comparative osts will be something for suppliers to vork out and advertise, though we exrect the valve unit to be the cheaper of the two, at least for the time being.
The restyling is largely a matter of ihysical arrangement. The old "selector" iwitch, popular a few years ago, has reen replaced by two switches, one to elect the signal source and the other o select "mcde" - a variation largely rompted by the possible use of ampliiers with mono/stereo tape-recorders. This new control facility, requiring an :xtra knob, cbviously calls for a new janel, the layout being the same as for

A front view of the new 118 Playmaster, fitted with a full-size panel and housed in a teak case, both a wailable from one of our advertisers. These could be used for the 115 all-silicon unit featured in the May issue. alternatively, the new 118 can as easily be housed in a metal case. the wo being quite interchangeable.

A rear view of the 118 Playmaster, constructed in the chassis originally designed for the popular 106 tuner/amplifier. The vertical bracket in the left foreground carries the DIN plugs for radio tuner and tape input / output. Constructors not requiring these facilities may prefer to omit them for the time being, but we suggest that the adjacent output trans-
former be moved forward slightly-just in case!

WAGRATHES

 Stentoriaun SPEAKERS
Model H.F 1016 STENTORIAN

10 in P.M. Unit and 16,000 gauss magnet. Universal impedance speech coil at 3, 7.5 and 15 ohms. Capacity 10 watts. Frequency response 30 c.p.s. to 15,000 c.p.s. Bass resonance 35 c.p.s. . 0 (including salls
Model H.F. 1012 STENTORIAN
10in Unit 12,000 gauss magnet. Universal impedance speech coil at 3, 7.5 and 15 ohms. Capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance, 35 c.p.s., $\$ 14.00$ (including Sales Tax).
Model T. 10 STENTORIAN TWEETER
Speech coil is aluminium wire wound on an aluminium former rigidly fixed to an aluminium diaphragm. Giving hish standards of reproduction when used with Stentorian H.F. 1012 and H.F. 1016 speakers. Speech coil impedance: 15 ohms. Response: $200 / 15.000$ c.p.s Flux density: 14,000 gauss. Capacity: 5 watts $\$ 16.00$ (including Sales Tax).

CROSSOVER NETWORK

W/B Crossover is of the filter type and is fitted to all the Duplex Loudspeakers. It is available for use separately, the $3.000 \mathrm{c} / \mathrm{s}$ type is half section series connected having an attenuation of 12 dB per octave. C.X. $3000, \$ 6.50$ (including Sales Tax).

VOLTAC

TYPE	In V	Out V	Current	CAP. VA	$\begin{array}{\|c\|} \hline \text { PRICE } \\ \text { Sales Tax Extra } \end{array}$
P1 Panel Mounting	230	0.260	0.5 Amps	100	\$8.80
BP3	"	,	1.5 Amps	300	\$14.60
	",	"	2.5 Amps	500	\$17.25
SB5 Bench Mounting	",	",	5.0 Amps	1000	\$23.40
SB15 \quad "	",	",	10.0 Amps	2000	\$45.25 $\mathbf{\$ 5 3 . 1 0}$
B15 ${ }_{\text {B25 }}$	"	\cdots	15.0 Amps	3000 5000	\$53.10
B25 .,	,	\because	25.0 Amps	5000	

Sales Tax where applicable $12 \frac{1}{2} \%$. (FREIGHT EXTRA!)
ALL THE ABOVE ARE AVAILABLE IN 3-PHASE COMBINATION. PRICES ON APPLICATION.

MAGRATH'S FOR ALL "ELECTRONICS Australia" PROJECT KITS

VARI-TACH Motor speed control project kit
 Further details-Page 43, March '66 "ELECTRONICS AUSTRALIA"

 Using this easily constructed, low-cost unit the speed of a "universal" or communator-lype AC motor may be adjusted over a wide range while still maintaining fairly constant torque. deal for controlling speed of electric drills, saws, food mixers, projec-tors. etc.
$\$ 21.75$
COMPLETE AND POST FREE
Anywhere in Australia and Model train control kit with SIMULATED INERTIA
Further details-Page 80, March '67 "ELECTRONICS AUSTRALIA"
$\$ 14.75$

SALES TAX AND POSTAGE PAID

It offers all the advantages of the simple thyristor controller, together with circuitry which makes the model perform just like a real train.

Panbrake Berich Mounting Metal Folder, $\$ 19.50$ plus $12 \frac{1}{2} \%$ sales tax
Postage: Wishin Vic. \$1.25, Within N.S.W., Tas. \& S.A. \$1.80, Elsewhere in Australia \$2.60.

An underneath view of the amplifier, with most of the wiring components neatly arranged on tagboards. These are diagrammed on page 83. The vacant holes used for the tuner in the 106 tuner/amplifier are evident, but this area can very logically be used for a solid-state preamplifier board, if it is intended to use a high quality magnetic cartridge.
the constructor but the circuit itself irtually unchanged.
As will be apparent from the photouph of the chassis, two "push-in" type elded sockets are provided on the ir lip for connection to a stereo cartge. Where it is intended to use a ignetic cartridge, the connectors would wired to a transistorised preamplifier ard to boost and equalise the signal fore it is passed on to the valve ciritry proper. Where a ceramic or 'stal pick-up is to be used, the preıplifier is unnecessary, the available nal teing suitable for direct applican to the amplifier in the simple form pictured. (We plan to describe a table preamplifier in our next issue.) As already mentioned two sockets are punted on a vertical plate behind one tput transformer-a DIN socket for ;h level tape inputs and outputs and other socket (preferably dissimiliar) possible connection to a Playmaster Λ radio tuner.
The various input signals are directed, desired, by the Selector and Mode itches to the grids of a 12 AX 7 high1 twin-triode used as a preamp for th channels. Use of this high-gain lve secures an input sensitivity of 0 mV RMS for fuli output, enabling en low output ceramic cartridges to ive the amplifier to full power. In specifying a $12 \mathrm{AX7}$ as a first oice, we are assuming that most conuctors of an amplifier such as this ll , in fact. select one of the better ality ceramics. If a crystal cartridge used, its higher output could lead to me distortion, since the $12 \mathrm{AX7}$ ap-
proaches overload with input signals greater than about 1.7 volt RMS.
Those who already have a crystal cartridge on hand could reduce the gain by substituting a 12AU7 as a direct plugin replacement. For best operating conditions, however, the cathode resistors should be increased to 2.2 K and the 120 pF capacitors in the input balance network reduced to 33 pF . With the 12AU7, the sensitivity falls to 360 mV for full output, a figure which is ample for crystal cartridges.
Alternatively, the signal output of any piezo cartridge-crystal or ceramic can be reduced by connecting selected values of capacitor across the respective output leads. This has the added advantage of reducing the effective source reactance, relative to the load resistance and extends the bass response, whilst lowering the output over the rest of the range. A little experiment can establish the desirable conditons where the pickup can just comfortably overload the amplifier with the volume control a little less than full on.
The balance control consists of a single $2-\mathrm{meg}$ linear potentiometer, with each "leg" connected to the triode grid in each channel and with the moving arm connected to earth.

Following the preamp. stage come the tone control networks and the volume control. Putting the controls in this relative position in the circuit makes it necessary to protect the preamplifier valve against overload, as already outlined, but it makes for a much "quieter" amplifier. Any hiss and hum from the preamplifier stage is attenuated by what-

Is your Career or Hobby ELECTRONICS
Do these subjects interest you? Piezoelectricity, Video, Compuiers
Then don't miss the huge display of BOOKS from Gernsback, Hayden-Rider, Howard Sams, Dover, Foulsham-Sams

during July at DYMOCKS BOOK ARCADE, 424 George Street, Sydney. COLLINS BOOK DEPOT PTY. LTD. 363 Swanston Street, Melbourne. BARKERS BOOKSTORE PTY. LTD, 196 Edward Street, Brisbane. RIGBY LIMITED,

22 James Place, Adelaide.
ALBERTS BOOKSHOP,
14 Forrest Place, Perth.
Write to:
GRENVILLE PUBLISHING CO. PTY. LTD.
154 Clarence Street, SYDNEY. for complete catalogues.

GOODMANS HIGH FIDELIT

GOODMANS MAXAMP 30 AMPLIFIER
No bigger than a stout book. the MAXAMP 30 is a fully transistorised stereophonic high-fidelity amplifier using silicon transistors throughout and it looks as good as it is. In a polished wood cabinet with "Danish Silver" scratchgrain control panel. Brief specifications are: Frequency Response: 20 c.p.c.- 20 Kc.p.s. plus minus 1_{2} d.b. Distortion: Less than 0.4 p.c. at at 100 K ohms: Aux.. $3 \mathrm{~m} . \mathrm{v}$. at 50 K ohms: Tape. $150 \mathrm{~m} . \mathrm{v}$. at 100 K ohms. decor.

For the first time, GOODMANS offer all the units you need for "component" high fidelity. Now you can buy your record player, amplifier and speakers . . . all bearing the famous name of GOODMANS. As illustrated above, the components provide flexibility of placement on your bookshelves, desk or built-in furniture in a way that is convenient, unobtrusive and in perfect harmony with modern
'er amount the volume control is norally retarded. while there is less gain llowing the controls to amplify cratching" sounds produced by faulty rriable elements.
As can be seen from the tone control sponse curves, generous bass and sble boost and cut facilities are proded. This suits the amplifier to typical ookshelf" loudspeaker systems, which ually require moderate bass boost, hile still leaving enough bass boost r program correction or low level tening.
The tape outlets are supplied from the luF preamp. coupling capacitors via iK resistors. Notice that the shielded ble to the DIN socket is earthed at a sint adjacent to the 12AX7 socket. The gnal to the tape outlets is independent the setting of volume or tone conols, allowing tape recording to proceed ith the amplifier completely silenced, at any level desired for incidental itening or monitoring.
The rest of the circuit consists of two 3W8s in each channel, in a welloven configuration that has been used ten in various projects over the years. 2e pentodes of the two "6GW8s are innected in a push-pull "ultra-linear" ode.
The triodes of the 6GW8s are used voltage amplifier and phase splitter each channel. A step circuit is conacted in the plate circuit of the voltage nplifier to roll off the frequencies ove 20 KHz and thus minimise the risk
instability at supersonic frequencies.
Negative feedback is applied from the i-ohm secondary of each output transrmers to the cathode of the relevant Jltage amplifier triode. The feedback of the order of 14 dB , which seems lite "puny" when compared with the nount used in some transistor ampiiers. However, the ultra-linear connecon confers an additional benefit and e performance of the power amplifier a whole is very good, as will be 'ident from the distortion figures loted in the specification panel.
Notice the phase-correction capacitor mnected across the feed-back resistor. his is used to offset the phase rotation
the output transformers as the frelency increases. It is normally selected sing a square wave generator and a RO, but the value shown should be sry close to the mark for the output ansformers which constructors are kely to use in this design.
The transformers are supplied with ulti-tapped secondaries for loads of $7,8.0$ or 15 ohms. We suggest, howrer, that the trarsformers be wired with

The complete circuit diagram of the new 118 amplifier, as it would be for those planning to use a ceramic pickup. For a crystal pickup, delivering higher output, it would be wise to substitute a 12AU7 for the $12 A X 7$ input stage, or reduce the output of the crystal cartridge, as explained in the text. For a magnetic cartridge, a preamplifier will need to be added, which will be presented next month. In practical service, the performance of this amplifier should be indistinguishable from the 115 Playmaster, described in the May issue.

12v. All Transistor P.A. AMIPMPIEIL

No. 598-Complete Kit of parts 10 smallest screw. \$57. No. 656 Wired ready to operote, $\$ 80$. Freight extra. Size: $\sin w . x 3 i n h$. x gitin d. Weight $6 \frac{1}{2} 16$.

MAGNETIC STEREO PRE-AMP $0 \begin{aligned} & \text { In SMv. out } \\ & \text { SoOMr. } \\ & \text { and ircble } 18\end{aligned}$
 D.B.
700 C
Wig.
N Wired ready for use. $\$ 31$. Post-
age
$30 c$

COILS IF' 455 Ke

 Aer, R.F. osc. and 1 F's . .. $\$ 1.70$ ea. Ferrite AerNo. 265 Universal Tape OSC coil \$8. Postage 10c. Write for detaila and price

Sibn Nimatine STERRO

MULLARD 12 TRANSISTOR

5 Watt $\times{ }^{5}$, watt.
Distortion 1,2 of 1%. Frequency re
sponse 30 cycles to iskc. Output is Ohm speaker
 $2-57 \mathrm{w}$ Main Amplliers No. $\$ 34.00$ $\begin{array}{lll}1-5 w & \text { Power Supoly No. } \\ & \text { Kisic } & \$ 34.00 \\ \$ 16.00\end{array}$ Steel chassis. plated No. 649 \$ 2.50 COMPLETE KITS, nuts. screws. 878.50
etc. NO. 471 C Wired and tested. No. 4710 . extra \$5.00. Freight extra. Write for blue print list of parts.

R.C.S. PRINTED CIRCUITS

For all R. \& H.i.E.A.: Mullard. Philips and other designs. Cleariy coded. White letters and numbers, easy assembly and
service, print parts listis: To your arawing under $6 \mathrm{in} \times 6 \mathrm{in}$, $\$ 4$.

New Printed Circuips 700 Magnetic pre-amp $\$ 3$ 703 Mull. $7{ }^{704}$ W. stereo. $\$ 3$ 707 10W stereo. 67 . ${ }^{73}$ 708 low. amp. 67. A3 3.50 709 Pra-amp 67.P5 $\$ 2.50$ Write for full list. Immediate despatch. Postage 10 C .

$$
\begin{aligned}
& \text { Recent Designs }
\end{aligned}
$$

685 Pre-amp. 65-P12A 82.50
586 Pre-amp 65. P128 $\$ 2.50$
690 pre-amp $65 . \mathrm{P} 12852.50$
695 Electronic Fiash. $\$ 2.50$

R.C.S. COMPLETE

 DO-IT-YOURSELF KITSPeak reception. tow price. No expensive test equipment. Everything fits. 1964 RF Transporta 7. Cornplete
kit-No. 640 . $\$ 43.50$ Portable car radio. identical to 640 above. plus extra swisch and car coll. (Write for bookiet on 540 and 642 .)
Postage $\$ 1$.

PERSONAL PORTABLES

Range 30 miles, 2002 TRANSISTORS with short derial

Do-it-yourself
No. 666C. $\$ 9.00$.
1 TRANSISTQR-I DIODE 582 Do-it-yourself kit .. \$5, post. IOc 593 Wired ready to operate, \$6, post 10c.

DIAL KITS

Scale gold with white letters. Size $6 \frac{2}{2} \mathrm{in} . \times 2 \frac{1}{3} \mathrm{in}$. to match.

- No. 459 300pf gang, $\$ 4.00$
- No.461 200pf gang, \$4.00 Post 20c.
 stages adjustable aerial coup-
ling. KIt of parts NO 659 C . (2) 461 dial. knob and switch pot.

IMPROVED BATTERY SAVER KIT

$41 / 2$. 6 or 1 volts. Reploces transisto battery power input 240 volts A.C. Maximum milliamps 100. Hum-free operation. Size $31 / 2$ in 1 . $21 / 2$ in $w . \times 11 / 2$ in h. No. 657. $\$ 6.50$ (post 10c).

choose your hi-fi equipment from the comprehensive range of PEAK turntables, record players, speakers, miniature speaker systems, headphones and amplifiers.

STEREO EQUIPMENT

sole Ustralis adalice orisbane H. Rowe ausyalan hoobar melooune

the brand you can trust for long life, high quality performance, attractive appearance to match any decor \square stocked and sold by leading resellers in all states
"Common" side of the secondary to amplifier chassis which means that the sis and with the feedback taken, as chassis manufacturers can "pension off" 'n, from the 15 -ohm tapping. The the Unit No. 4 chassis. It allows a speakers can be connected across more compact layout for the valve cire or part of the winding, as requirie transformers sold for this and the er 106 Playmaster are constructed "grain-oriented" laminations. They rated for 12 watts RMS at 40 Hz as such, are outstanding value for Combined with the chassis is the ey, when compared to the "super- transistor amplifier. This accommodates ity" types which extend the power the new control layout, which is now onse to 20 Hz and below - fre- standard on Playmaster stereo ampli-
hardware, such as the power and output transformers, should be mounted first. The power transformer should be mounted on the chassis with spacing nuts, leaving in position the nuts already on the transformer. If it is mounted flush on the chassis, the chassis tends to become part of the transformer core, aggravating any possible eddy-current and hum problems.

Note that the output transformers must be mounted as shown so that their cores are perpendicular to the plane of the power transformer core - this to

These diagrams should assist materially in wiring up the amplifier. Depicted above is the wiring for the preamplifier board and the adiacent tone controls. At the right is the wiring for one power amplifier board, the two being identical except for a pair of lugs used to terminate the $H T$ wiring. It is suggested that the boards be checked for mounting position, then pre-wired before installation.

ncies which occur very seldom in re- fiers. Some of our advertisers supply ded music, anyhow! Koving now to the power supply, it l be recognised as a conventional ltage-doubler" full-wave system, a an LC network for effective filterof the HT supply. The regulation the power supply is sufficient to ble both channels to give the same ver before "clipping," whether they driven singly or simultaneously. Ind now to the construction of the plifier: Here, the major differences ween the Unit No. 4 and the present plifier will become readily apparent. Ve used a Playmaster 106/107 tuner/
an anodised aluminium control panel to be used with the Playmaster 115, and this is attached to the front panel with the potentiometer nuts. However, it should not be mounted until the amplifier is complete and ready for installation, otherwise it may be marred by accidental scratches.
Four extra $1 / 8$-inch clearance holes will need to be drilled in the front panel to enable panel and chassis to be screwed together. Use countersunk screws and see that the heads are flush with the surface of the sub-panel. To begin the assembly, the bulky

ALWAYS RELY ON R.D.S.

SPECIALS FOR JULY

We now have in stock the following FAIRCHILD TRANSISTORS

2N3565 - 2N3638
2N3642-2N3645
2N4360 - SE4010
5 watt per channel

STEREO AMPLIFIER $\$ 37.00$ nett

MULLARD MINI SPEAKER BOXES $\$ 11.75$ nett

Suppliers of all Radlo and TV Components Meter and Multimeters

Cr500 Multimeter
${ }_{55}^{511.25} 5$ $\$ 11.25$
$\$ 6 / 9 / 4$
$\$ 12.93$
$\$ 12.93$
The Independent Wholesaler
RADIO DESPATCH SERVICE,
Radio and Electrical distributors; 869 GEORGE STREET, SYDNEY. Cnr. George and Harris Streets.

Phone 211.0816, 211.0191
Open Saturday mornings,

THE CHOICE OF 70\% OF RADIO STATIONS P58H

by magnecord \star Less than $.1 \%$ wow and futter \star Four speeds Heavy hysteresis synchronous motor for stable and precise speed Heavy cast and precision balanced 12" turn. table weighing 1.65 Kgs 240 Volts, 15 watts Very low rumble and negligible hum \star Spare parts always available \nrightarrow Meets all standards laid down for broadcasting stations.

MAGNECORD AUSTRALASIA PTY. LTD., CHAPMAN HOUSE, 210 CLARENCE ST SYDNEY. PHONE 29-1704.

WILLIS HAMMER TYPE DIE PUNCHES

Size	Price	Size	Price	Size	Price	Size	Price
3/8 inch	\$2.40	1 inch	\$3.80	$1 \frac{1}{2}$ inch	\$6.00	2t inch	\$9.60
7/16 inch	2.40	1-1/16 inch	4.00	1-5/8 inch	6.40	2-5/16 inch	9.60
$\frac{1}{2}$ inch	2.60	1-1/8 inch	4.00	$1 \frac{3}{4}$ inch	7.20	2-3/8 inch	10.40
5/8 inch	2.60	1-3/16 inch	5.00	1-7/8 inch	8.00	$2 \frac{1}{2}$ inch	11.00
11/16 inch	2.80	14 inch	5.20	2 inch	8.40	$2 \frac{3}{4}$ inch	12.40
$\frac{3}{4}$ inch	3.00	1-5/16 inch	5.20	2-1/16 inch	8.60	3 inch	13.40
13/16 inch	3.20	1-3/8 inch	5.60	2-1/8 inch	9.00	34 inch	15.80
$7 / 8$ inch	3.80	1-7/16 inch	5.80	2-3/16 inch	9.40	$3 \frac{1}{2}$ inch	18.20

WILLIAM WILLIS \& CO. PTY. LTD.

430 ELIZABETH STREET, MELBOURNE, C.I., VICTORIA
Phone 34-6539

Chassis $12 \ddagger$ in $x 7 \frac{1}{2}$ in x 14in (Play. master 106/107).
1 Panel $12 \frac{1}{4}$ in $x 4 \frac{1}{2}$ in (Playmaster 115).

1 Printed label (Playmaster 115).
1 Power transformer, voltage doubler type, 114 volts $A C, 150 \mathrm{~mA} D C$, 2×6.3 volts $C T-3 A$.
1 Filter choke, $150 \mathrm{~mA}, 2 \mathrm{Henries}$, DC resistance 125 ohms.
2 Output transformers, $A \& R$ Type OT 4005, Ferguson OP412 or equivalent.
5 9-pin valve sockets.
1 2-pole 4-position rotary switch with "earthing plate."
1 3-pole 5-position rotary switch.
1 5-pin DIN socket, 1 5-pin socket for tuner.

VALVES AND DIODES

4 6GW8.
$112 A X \dot{7}$ or $12 A U 7$.
2 Power diodes, OA210, EM404-10, etc.

CAPACITORS

$2100 \mathrm{uF} / 200 \mathrm{VW}$ Electrolytics, "voltage doubler" type.
$150 u F / 350 \mathrm{VW}$ Electrolytic.
$132 u F / 300 V W$ Electrolytic.

2 50uF/50VW Electrolytic.
$250 u F / 6 \mathrm{VW}$ Electrolytic.
2 25uF/10VW Electrolytic.
$4.022 u F / 400 \mathrm{VW}$ plastic.
$2.01 u F / 400 \mathrm{VW}$ plastic.
. $022 u F$ L.V. (low voltage) plastic.
2 .0047uF L.V. plastic.
$2.0047 \mathrm{uF} / 125 \mathrm{VW}$ plastic.
2100 pF L.V. plastic.
2560 pF L.V. plastic.
${ }_{2}$ 120pF L.V. plastic.
$2270 p F$ L.V. plastic.
21000 pF L.V. plastic.

RESISTORS

(half watt unless specified)
$6 \mathrm{MM}, 8100 \mathrm{~K}, 2470 \mathrm{~K}, 268 \mathrm{~K}, 2$ $47 \mathrm{~K}, 239 \mathrm{~K}, 412 \mathrm{~K}$.
$42.7 \mathrm{~K}, 24.7 \mathrm{~K}, 21.8 \mathrm{~K}, 2100$ ohm, 26.8 K l-watt. 2100 olum 3-watt.

POTENTIOMETERS

$3250 K(\log)$ dual ganged, 1-2M(lin).

SUNDRIES

Miniature tagboard, 2 16-lug, $110-\mathrm{lug}$.
2 2-pin speaker plugs and sockets, 2 phono input sockets and plugs.
6 knobs as in illustration, dual lamp holder with lamp and bezel, rubber grommets, miniature tagstrips, shielded cable, hook-up wire, etc.
inimise the 50 Hz hum induced in the /P transformers by leakage flux from e power transformer. The 1 -inch long juntersunk screws for mounting the gboards should be fitted before ounting the O / P transformers. All les in the chassis through which wires iss should be fitted with grommets to op any chafing of the insulation.
Looking at the photograph of the nplifier layout above the chassis it will \because noticed that we have moved one O/P ansformer forward by a distance of n . This is to accommodate the auxilry panel on which we mounted a DIN icket for tape outlets and inputs and so a socket for a tuner.
We made our panel from a piece of j-gauge aluminium. The extra input ickets might conceivably have been ounted along the rear of the chassis it we preferred not to do so as they ould have been hard against the output live sockets.
Having mounted the transformers, the st of the "hardware" can be installed. ue to the different design of the voltje doubler capacitor brackets, we had drill extra holes to mount them. We -sited the filter choke for the same ason. Extra holes have also to be rilled to fit another two screws to ount the tag-boards, which are longer lan those in the original Playmaster 36.

Valve socket orientation will be sadily apparent from the appropriate notograph. The potentiometers were t back by the thickness of one nut, llowing only enough thread to proude to accommodate a nut and lock asher. This means that the control nobs can be mounted almost flush with ie control panel.
Wiring can begin with the power ipply and a word of advice to novice onstructors is appropriate here. Do not se the same coloured hook-up wire iroughout the amplifier. It makes wiriroughout the amplifier. It makes wir-
ig inspection and fault-finding so much
more difficult. For example, red may be used for HT supplies, brown for heater supplies, black for earth returns, yellow for cathode networks.
The power supply is wired using the 114 volt tap on the transformer secondary. Those who intend using a Playmaster tuner are recommended to use the 104 volt tap otherwise the transformer will be overloaded, when the tuner is in use. Since the transformer is supplied with two 3 -amp centre-tapped windings it is a good idea to load them equally. Each winding can supply a separate channel and preamp or tuner.

The tuner HT supply can be taken directly from the junction of the "voltage doubler" capacitor and filter choke via a 2 Kohm decoupling resistor and a 32 uF filter capacitor. This arrangement is least likely to upset the operating potentials in the amplifier. The network can be mounted in the amplifier chassis or tuner chassis; we chose to omit it to avoid crowding.

The power cord should be securely anchored using a metal clamp and insulated terminal block. The mains switch is incorporated with the volume control. This is an optional feature and some readers may prefer to keep all mains wiring away from the control section. Others like the convenience which the combined volume control/ switch affords.

All wiring associated with the 6GW8 valves is contained in either of the two 16-lug tagboards. We have provided a wiring diagram of one of these tagboards which are similar except for the following: Notice the tags marked with an asterisk on the diagram; now refer to the under-chassis photograph and it will be seen that these tags are used to mount the HT filtering capacitors and the 6800 -ohm dropping resistor.

In general, it is easier to partially wire the tagboards before mounting. For example, all the resistors and smaller capacitors can be inserted, soldered and

BASIC KIT Box ${ }_{3}$, two labels. $3 \mathrm{I}_{2}$ meg. Potentiometers. 3 knobs, circuit: $\$ 3$ plus 1212% sales Tax.
complete unit, above plus all parts to make cors
tors. batteriies. etc. $\$ 10$ plus $121 \% \%$ S.T. TREBLE BOOSTER KITS. Same Prices As Above.

CLAYBRIDGE SOUND
60 BEDDOE AVE, CLAYTON. VI
PHONE $544-6171$.

DOVER PUBLICATIONS

Author Title Retail Price

ALLISON-High Fidelity Systems .. 1.25
BEWLEY-Flux Linkages and Electro magnetic Induction
BEWLEY-Travelling Waves in Transmission Systems
BEWLEY-Two Dimensional Fields in Electrical Engineering
BLACKMAN AND TUKEY-Power Spectra
BRILLOUIN-Wave Propagation
COBINE-Gaseous Conductors
DAVIES-Ionospheric Radio Propagation
FEINBERG-Atomic Theory and MILTON ${ }^{\text {ET }} \dot{\text { AL-Klystons }}{ }^{\circ}$ - Microwave Triodes HAY-Vector and Tensor Analysis
HALL-Radar Aids to Navigation JAMES AND NICHOLS-Theory of 3.45 Servomechanisms $. \ddot{\cdots} \cdot . . \quad . \quad . \quad 2.80$ KERR-Propagation of Short Radio Waves
KING-Transmission-Line Theory . 3.45
KING. MIMNO AND WING-Transmission Lines, Antennas and Wave Guides
KRON-Tensors for Circuits
LAWSON AND UHLENBECKThreshold Signals
LEWIS-Protection of Transmission
Systems against Lightning Systems against Lightning
MARCUVITZ-Waveguide Handbook 2.80
MAXWELL-Electricity and Magnetism - 2 vols., per set
MONTGOMERY - Technique of Microwave Measurements- 2 vols per set
MORENO-Microwave Transmission Design Data
O'RAHILLY-Elctromagnetic TheoryVol. ${ }_{2}^{2}$
PURCELL-Principles of Microwave Circuits
AGAN-Microwave Transmission
RAYLEIGH-Theory of Sound Vol. $\frac{1}{2}$
RIDENOUR-Radar System Engineering
ROSENFELD-Theory of Electrons
SILVER-Microwave Antenna Theory and Design
SLATER-Microwave Transmission
SOLLER ET AL-Cathode Ray Tube Displays
SVOBODA-Computing Mechanisms and Linkages
U.S. BUREAU OF NAVAL PERSON-NEL-Introduction to Electronics.
U.S. DEPT. OF ARMY-Basic Theory and Application of Transistors
U.S. BUREAU OF NAVY PERSON-NEL-Basic Electricity
U.S. BUREAU OF NAVY PERSON-NEL-Basic Electronics
VALLEY AND WALLMAN-Vacuum Tube Amplifiers
VAN VOORHIS-Microwave Receivers
. 3.75
VILLCHUR-Reproduction of Sound
WEBER - Electromagnetic Theory Static Fields and their Mapping 3.45 OBTAINABLE FROM LEADING BOOKSELLERS
For Catalogue, write to:
GREMYILLE PUBLISHING CO. PTY. LTD.
154 CLARENCE STREET, SYDNEY.

ANNOUNCEMENT

are pleased to advise their appointment as sole agent in australia for

IN-LINE
CONNECTORS

C.SNTACT MK-I

- 14 TRANSISTORS
- longer aerial
- MICROPHONE SOCKET

- EXT. I2v SOCKET
- GREATER RANGE
- NEW CIRCUITRY
- battery meter
- APPROVED FOR USE BY BUSHFIRE FIGHT. ING AUTHORITIES
STILL ONLY \$116 ea.
TOKAI TCII
- II TRANSISTORS
- all metal
- COW HIDE CASE
- ear piece
- ir EXT. SOCKET
- 100 MW
- SQUELCH
- superb clarity
$\$ 49.75$ each
Also TOKAI TC9 and
911 without Squelch
$\$ 44.75$ each
Dozens of units available all P.M.G. approved fiom $\$ 18$ each. Powerful 5 watt base stations We will gledly check the power output of your present unit free of charge, and we w. lot you see what our instruments show. If your unit is down on efficiency, we will quote to realign anc tune it, or offer you a replecement with a liberal trado-in. Nowhere else can you see such a complote range of Transcoivers.
PETER SHALLEY
ELECTRONICS
JUST BEHIND NOCK AND KIRBY
95 YORK STREET, SYDNEY, N.S.W. Telephone: 29-3767
trimmed. Note that the cathode feedback should be correct. However, if for the output pentodes is wired I the tagboard. Make sure that it ammed hard up against the metal as the insulation might fail. 100Kohm resistors for the tape were mounted on a separate tagdjacent to the selector switches. resistors can be omitted if the do not require recording s. here a word about the colour to be used when connecting the transformers. Referring to the diagram of the amplifier tagboard
the amplifier breaks into oscillation when it is switched on, the feedback can be reversed by simply swapping the leads to the grids of the two pentodes (pin 8, 6GW8).
All earth returns associated with the 6GW8s are made to points adjacent to speaker sockets. The earth returns associated with the preamp. valve are made to an adjacent point on the chassis, while the shielded cable for the input signal leads should return via the "shorting ring" on the selector switch back to the earthing point for the preamp.
response curfor the 118 virtually the as for the or 106 Player. Following is normal tice for highity systems, cross over at 1 KHz .

IIFICATIONS:

POWER: 8.5 watts rms per channel into 16 ohms, prior to clipping.
DISTORTION: Total harmonic distortion at 2 KHz at 1, 3 and 8 watts is $0.26,0.37$ and 0.42 per cent respectively.
CROSS-TALK at 1 KHz : (one channel driven to full power) $-38 d B$.
SIGNAL to NOISE RATIO: 53dB below full output.
INPUT SENSITIVITY: 110 mV for all inputs with input impedance of 1.5 M .
FREQUENCY LIMITS ($-3 d B$): 18 Hz and 20 KHz taken at an output level of 1 watt. Bass control 13 dB boost and 10 dB cut at 50 Hz ; Treble, 10 dB boost and 20 dB cut at 15 KHz .
OUTPUT IMPEDANCE: (from 16-ohm secondary) approximately 2 ohms.
DAMPING FACTOR: Appr. 8.

ave nominated the valve close to ear of the chassis as V1 and the valve as V2.
ten using the A\&R OT4005 trans:r, the colour code is:

SCREEN 1. Violet,
SCREEN $2 \ldots . .$. . . Orange,
ANODE $1 \ldots . .$. . . .
ANODE 2. Green.
e code for the alternative Ferguson
2 is:
SCREEN $1 \ldots \ldots$. . . . Black,
SCREEN $2 \ldots \ldots$. Yellow,
ANODE $1 \ldots \ldots$. . . . Green,
ANODE $2 \ldots . .$. . Blue.
th the common terminal of seconwinding earthed, the polarity of the

The input shields should not be earthed at the input socket unless this proves later to give a noticeable reduction in residual hum and noise. The shielded cable to the grids of the voltage amplifier triodes is earthed to ona of the 6GW8 spigots.

When assembly of the amplifier is complete all wiring should be doublechecked against the circuit diagram. Then, if you have an ohmmeter on hand, check the HT line for short-circuits to earth. Touch the positive probe on the positive terminal of the first filter capacitor with the negative terminal connected to the chassis. The pointer should swing over towards zero and then move rapidly up the scale to a value of around 5 Kohms, representing initial leakage through the filter capacitors.

The amplifier can now be switched on. Check the feedback as described previously. Then a check can be made on the "no-signal" voltages. If the voltages do not vary by more than about 10 per cent from those specified, the amplifier can be regarded as normal.

The fcllowing is a list of voltages obtained from the prototype using the 114 volt tap on the power transformer secondary, with no input signal applied:
HT1
295 V
HT2
250 V
 6GW8 pentode cathodes 7.8 V 6GW8 triode (volt. amp.) cathodes 1.2 V

Incidentally, the signal to noise ratio on this amplifier was measured with a 470 pF capacitor shunting this inputs to simulate a ceramic cartridge. This gave a signal to noise ratio of - 53 dB relative to full output which improves to about - 56 dB with "short-circuit" inputs.

Now, you can connect your turntable, put on a record and settle back to enjoy a few hours with your newly constructed stereo amplifier. It can certainly produce some very nice sound and-plenty
of it, if need be!

Learn what makes the giant computers tick!

Stimulating Educational Fun!

- SOLVE PROBLEMS - PLAY GAMES

 - TELL FORTUNES - SOLVE RIDDLESwith this fascinating miniature version of a giant electronic brain
Teaches Computer Fundamentals, Solves Real Problems, Adds. Subtracts, Multiplies, Complements, Shifts, Carries, Memorises, Compares Sequences. Ei. Does Everything (Mechanically) The Giant Electronic Brains Do.
Easily. Assembled Kit Includes 28-Page Manual Covering Operation Computer Lenguage (Binary
System) Programming Problems PLUS Dazens System) Progromming, Problems, PLUS Dazens
More Exciting Experiments in The Big NEW More Exciting Experiments in The Big NEW
FREE 50-Page FREE $50-$ Page Detailed Programming Book. ALL for Only $\$ 12.95$ post paid.

Send cheque/M.-Order to:-

Dept. E.2.67, Box 3702, G.P.O.. Sydney. Or 85 William Street, Sydney. Telephone 31-3922

Is your Career or Hobby ELECTRONICS
Do these subjects interest you?
Piezoelectricity, Video, Computers
Then don't miss the huge display of

from
Gernshack, Hayden-Rider, Howard Sams, Dover, Foulsham-Sams
during July at
DYMOCKS BOOK ARCADE, 424 George Street, Sydney.
COLLINS BOOK DEPOT PTY. LTD.
363 Swanston Street, Melbourne.
BARKERS BOOKSTORE PTY. LTD, 196 Edward Street, Brisbane. RIGBY LIMITED,
22 James Place, Adelaide.
ALBERTS BOOKSHOP,
14 Forrest Place, Perth.
Write to:
GRENVILLE PUBLISHING CO.
PTY. LTD.
154 Clarence Street, SYDNEY. for complete catalogues.

Ever considered the advantages of Constant Heat?

Constant heat is only ONE of the features c

AUSTRALIAN MADE
MICO
\section*{LOW VOLTAGE - LOW WATTAGE SOLDERING IRONS}

- SAFE LOW voltage - no danger. Operates from DC storage battery or 240 V AC step-down transformer.
- RANGE-4, 6, 12 and 24 -volt types in various ratings.
- LIGHTWEIGHT AND SMALL SIZE-ideal for transistors, meters, models and all electronic soldering applications.
- RUGGED design ensures years of service.
- GUARANTEED 90 days.
- AUSTRALIAN made - no delay in obtaining spare parts.
- REPAIRABLE - every part replaceable. A quick repair service
direct from Mico Electric Pty. I 76 Penshurst St., Willougl N.S.W
- INBUILT REST - the hexag disc prevents rolling.
- QUICK warm-up period. The watt model reaches operating t perature in 90 seconds.
- SOLDER HEADS-(bits) preci machined nickel plated copper a range of shapes to suit every quirement.
- CATALOGUE sheet and price on request.
- TRANSFORMERS - apprc types available.
Model illustrated ($\frac{1}{2}$ actual size) is 10 -watt type. Trade price . . $\$ 4.25$ 20-watt types $\$ 4.80$ 25 and 40-watt types .. . \$5.50
70 watt \$5.95
Exempt from sales tax - post free within Australia.

The choice of discriminating engineers everywhere. Stocked by leading Radio Supply Stores.
Factory Distributor:
WATKIN WYNNE PTY. LTD. 32 FALCON STREET, CROW'S NEST, N.S.W.
Phons: 43-1912, 43-2107 P.O. Box 318, Crow's Nest. N.S.W.

Come to -

Convoy

Iry our special systems for this month. Quality sound af a price to suif your pockel. We are af 449 Kenf Streef (just down from the Town Hall). Tel. 29.6475.

THE BEST QUALITY FOR A MODERATE PRICE

Peak TRM40 solid state quality amplifier 15 watts rms per channel less than 1 per cent distortion. Dual 1009 Turntable with Shure M44G magnetic cartridge and teak base. Pair Wharfedale Super 8 RS/DD Speakers in teak enclosures.

Convoy price \$319

Star SA30 Amplifier 12 watts per channel less than 1 per cent distortion. Garrard AT60 player. Pair Wharfedale 8in bronze speakers in teak enclosures. Your choice of Deram Cartridge or our new low cost high quality magnetic type.

Convoy price
\$218

Trio TK400E solid state amplifier. 32 Watts RMS per channel, only 0.15 per cent distortion at maximum output. Complete versatility in one unit. A superb performer with appearance to match.

Conyoy price \$219

Fisher X-100A Amplifier 17 watts RMS per channel with best Fisher quality. Dual 1019 turntable with Shure magnetic cartridge and teak base. Pair Goodmans Twin Axiom 10 speakers in teak enclusures.

Convoy price . . . $\$ 459$

Sony TC350 Tape Deck. A quality unit incorporating solid state circuitry, professional 3 -head system sound-on-sound and a host of exciting new features.

List price $\$ 260$.

We invite you to come and hear our wide range of famous brand equipment and also to discover the new names in high quality stereo reproduction. Our prices are worth discovering too.

AREADER BUITHTIT
Circuits and devices which we have not actually fested in our laboratory but published for the general inferest of beginners and experimenters.

EFLEX RECEIVER HAS FIXED REGENERATION

would like to submit the following your 'Reader Built It' page. Other lers may gain as much satisfaction n it as I have.
The result of much experimenting, circuit consists of a reflexed stage lving the first transistor, coupled to igh-gain 3-transistor audio amplifier. las enough gain to allow distant ons to be received at night, with the ferrite rod. With a short aerial an earth attached, stations can be ived with ease.
The regenerative turn greatly zases sensitivity and makes the selecy quite sharp, at least for my loca-
In my case the regenerative loop to be at least an inch away from primary to prevent the set from g into active oscillation. I chose to the pre-adjusted loop, but a conional regeneration system and concould be used if preferred.
lgain, I used a 6 -volt battery to Hy the receiver, but a 9 -volt supply d be used, provided the current in from the battery by the output : in particular was not excessive. used a ferrite rod 4 inches long of $3 / 8$-inch diameter. The exact ber of turns for a given coverage depend on the tuning capacitor used, most experimenters will probably a standard winding and a tuning citor of about 400 pF . The secondconsists of 3 turns, wound at one of the main winding. When an outaerial is to be used, it can be led to the receiver by winding two ree turns around the main winding,
as shown in the diagram. Since the ferrite rod, used without external aerial,
is highly directional in its pickup, it must be rotated for maximum pickup for the wanted station. In fact, this effect can be used for a volume control function, if desired, or to discriminate against an unwanted interfering station.
"Transistor TR1 is an AF117N, stabilised by means of a feedback resister and operates at 0.4 mA . The RF signal is amplified by TR1, then demodulated and fed back to undergo audio amplification. An AF117N is used in preference to other types, such as the OC44, because of its much higher RF gain. In the writer's experience, if an OC44 is used, sensitivity is greatly reduced. The 100 uF coupling capacitor was used because it was the only one on hand when the set was built, but a much lower value could be substituted. Any residual RF signal is earthed by means of the $.01 u F$ bypass capacitor.
"The audio signal goes to TR2 and then TR3, both AC126s and operating at 0.8 and 1.25 mA respectively. Both are stabilised by feedback resistors.
"TR4 was a 2SB223 transistor, but any output transistor such as an OC72 could be used. It operates at 15 mA and drives a loudspeaker with a voice coil resistance of 150 ohms. Output power is sufficient to produce sound enough for most purposes. Total battery drain is about 18 mA .
"The decoupling network to prevent 'motorboat' oscillations consists of 2 x 125 uF capacitors and a 680 -ohm resistor. Lower values of capacitor may be found

adequate.

"Finally, the regeneration coil has to be watched. A slight amount of movement is enough to cause large changes in volume. If the coil is bumped along the rod, the set is likely to break into active oscillation which will not only cause annoyance to the family, but may also cause interference with neighbouring receivers in weak signal areas."
(From G. Embery, Box 56, The Summit. Southern Line, Qld.)
(Continued on page 158)

For virtually PEREECT REPRODUCTION

build your own
world-famous Dynaco Hi-Fi Amplifier,
with an easy-to-assemble

Contact us for all models of fully assembled
(240V $50 \mathrm{c} / \mathrm{s}$)

HI-FI AMPLIFIERS
Write for free brochures to
 Victoria. 824839

KNOW YOUR GRAMOPHONE*

A plain man's guide to records and reproducers

By JOHN BORWICK, B.Sc.

PART TEN-MORE ABOUT AMPLIFIERS

can have too many electrons (N or too few (P-type).
If a DC voltage is applied to a of N-type material, the surplus ele will drift towards the positive ter Similarly, in a P-type material, thi or "holes" where electrons are n can be taken to drift towards the tive terminal. When a P-N junct formed, a degree of diffusion takes so that an electrically neutralised exists. Then, to produce a given c flow, it will require the application DC voltage or bias.

A transistor can be made to amp the correct choice of bias applied two junctions. In figure 3, for ex

The subject of amplifiers was discussed in the last chapter (April 1967) writh special reference to the various functions of the pre-amplifier/control unit. Now, whithout trying to produce an exhaustive study of amplifier theory, a few words will be devoted to the ways in which amplifiers work.

We can begin by saying how they don't work-in the way a simple transformer works. A transformer (see figure 1) is useful for stepping voltages up and down. It consists of two coils of wire wound on the same "former" in such a way that, when an alternating electric current is passed through the primary (input) winding, the resultant rising and falling magnetic fields link with every turn of the secondary (output) winding. When this happens, the magnetic field induces a current into the secondary winding corresponding to a voltage which can be greater than the applied voltage in direct proportion to how many times the number of turns of wire in the secondary exceeds that in the primary. Thus, if the turns ratio is $1: 2$, the voltage is doubled; $1: 3$, the voltage is trebled and so on.

But "you don't get anything for nothing in this world," to paraphrase the Law of Conservation of Matter. Therefore the actual power in a transformer secondary cannot exceed that in the primary. (Indeed it will be slightly less, as the transfer is always less than 100% efficient.) And, since electrical power = voltage x current, a transformer which gives a $2: 1$ step up in voltage will halve the current which can be drawn.

By an extension of this argument, it can be shown that impedances can be stepped up or down via a transformer, the ratio of the impedances being the square of the turns ratio.
How an amplifier amplifies: An amplifier genuinely boosts the pawer of the electrical signal and it does so by drawing on the steady power available from the AC mains supply (or batteries).

In the simple triode valve circuit in figure 2, once the heater has warmed up the cathode, the latter will emit a stream of electrons (negatively charged particles). These will drift through the evacuated valve interior towards the positive anode and so create a steady flow of current through the anode load resistor \mathbf{R}.
Now, when the alternating input sig. nal is applied to the grid (which is an open mesh construction placed between the cathode and the anode) the swings in grid voltage will cause an increase

[^4]Figure 1: A transformer will give a step up or down in voltage according to the turns ratio. It may also be used for impedance matching

or decrease in the flow of anode current. Furthermore, because the grid is closer to the cathode, it is found that a comparatively small input signal voltage can cause large changes in anode current and, since this current flows through R , the swings in voltage drop through R represent an amplification of the original signal.

The transistor amplifier: The transistor amplifier works on an entirely different principle. It is essentially a sandwich of semiconductor materials - figure 3 shows one of the possible configurations, with its circuit symbol. The basic material of a transistor, germanium or silicon, has no "free" electrons and so it is a non-conductor. During manufacture, however, small amounts of impurity can be added to upset the electron balance and so produce a "semiconductor" material. Depending on the choice of impurity, the semiconductor
if the bias were arranged so as t the base-collector circuit a much resistance than the emitter-base then, although the currents in eas cuit might be very similar, a col able power gain is possible. (Powe circuit is given by the square (current times the resistance, so a rc equal current in a larger resistanc responds to the desired amplific The name transistor was actuall veloped from the two words "tr resistor."

Figure 3 has been drawn in im of figure 2, to emphasise the poi similarity between a simple valu transistor amplifying stage. It will t that the input is applied to the b the PNP transistor (c.f. the grid valve) and the output is taken fro collector (c.f. the anode of the The emitter in this "common er configuration is equivalent to the

3 of the valve and is nmon to both the input and put circuits. The potential divider in base circuit gives a stabilised nega\because bias to the base. The by-passed istor in the emitter circuit appears resemble the cathode bias resistor the valve diagram but is actually to apensate for temperature variations. ?oints of difference between the valve 1 transistors circuits are readily n. For example, the transistor circuit of opposite polarity (true only of P transistors). Also, the supply vole is only a few volts, compared with und 200 volts for valves. This, comed with the greater efficiency of tranors, means that a much simpler powunit will suffice, less heat is generated I there is less risk of mains hum. - relatively lower impedances of 1 sistor circuits have made it possible a variety of designs to be produced which direct coupling to the loudaker takes place. This means that output transformer can be dispensed h - perhaps the most expensive aponent in a valve amplifier.
rrecautions ore necessary, when workwith transistors, to avoid either exgive heat or short circuits. The formrisk has led to the fitting of vaned t sinks for mounting power transis-;- so that a large area is available heat radiation. The latter is combatby the insertion of fuses in the HT and the design of more elaborate ispeaker terminals - to reduce the : of accidental short circuits.
.ooking at specifications: To round this section on amplifiers, here are re comments on the technical properlisted in makers' specifications. By , of example, we shall use extracts n the specification of the Rogers let Mark III stereo amplifier.

A TYPICAL SPECIFICATION

Inputs Sensitivity Impedance Pickup (magnetic) $3.8 \mathrm{mV} \quad 68 \mathrm{~K}$ Pickup.

ceramic/crystal)	65 mV	2 M
Radio	100 mV	470 K
Tape	600 mV	-

Frequency response: $20-20,000 \mathrm{~Hz} \pm$ 2dB.
Harmonic distortion: 0.8% at 10 W 0.25% at 5 W (at $1,000 \mathrm{~Hz}$).
[ntermodulation distortion: 3\% at 10 W (using 5 Hz and $6,000 \mathrm{~Hz} 4: 1$).
Signal-to-noise ratio: 60 dB (radio); 54 dB (Magnetic pickup).
Crosstalk: -42 dB at $1,000 \mathrm{~Hz} ;-26$ 1B at $10,000 \mathrm{~Hz}$.
?ower output: $10+10 \mathrm{~W}$ (sine wave); $12.5+12.5 \mathrm{~W}$, (IHFM music power). Power response: $9 \mathrm{~W}, 40-10,000 \mathrm{~Hz}$.
Dutput impedance: 3-5 ohms and 12 16 ohms.

THOUGHT POWER

claimed "A PROVEN FACT" by scientists, W makes possible the building of a peacenole "Thoughtcastimg" methods. Read pages nole Thoaghtcasting methods. Read pages plains how problems can be solved. Send 13c stamp to:ct. EA, 44 Victory Lane, Leura, N.S.W.

LOOK AT THESE. . SPEC/AL OFFERS FOR JUY - UVBEATABLE VALUE

1 Armstrong 222 integrated stereo amplifier. Power output to 10 watts push-pull. Frequency response: ${ }^{30-20,000}$ c.p.s. ${ }^{30}$ or minus 1 dB Power response $35-20,000$ c.p.s. plus or minus 1 dB . Harmonic distortion. Less than 0.5 p.c. at $1 \mathrm{~K} / \mathrm{cs}$ measured at 8 watts output R.M.S. Deeca Deram diamond needle, 2 Goodmans 8 in Twinexiette speakers or 2 里 18 Wharfedale 8in Super RS/DD speakers Garrard AT6 \&
turntable. PRICE \& 109 .
Armstrong 220 stereo amplifier Distortion Less than 0.1 4 p.c at $1 \mathrm{~K} / \mathrm{c}$ messured at 12 watts. Power output. Ultralinear 12 watts per channel. English best Stereo amplifier and Model 225 preamplifier. Dual 1019 turntable with on Empire 888 P.E. cart idge, 2 Tannoy 12 in Dual concentric spęakers. PRICE £381
-

7 JORDAN WATTS. A luxurious loudspeaker system suitable for a connoisseur's equipment, canable of a clean signal at good power down to 20 c.p.s. A frequency range is from 20 c.p.s. to 20,000 c.p.s. Power output 12 watts. For further details write to Recorded Music Salon, 23 Collins Street, Melbourne.

2 Pioncer SMB 16111 watt per 2 channel amplifier, 2 Wharfedale 8 in RS/DD speakers, Dual 1010 turntable com plete with cartridge. PRICE
channel tuner-amplifier P.E. 4-speed Hi-Fi turntabic with Decs Deram cartridge and diamon needle, 2 Goodman \leqslant 归 10 in . Twinexictte

6 Armstrong 221 Amplifier P. 1 34 turntable with Empire 80 cartridge, $2 \mathbf{R}$ and A
twin-cone 10 in speak-
The TOTAL, \&143. speakers $\$ 346$.

9Pioneer SMQ 300B amplifie Labcraft 605L turntable. A Balance arm, B. and O. cartridg 212 -inch Goodmans ${ }^{2} /{ }^{\prime}$ Triaxiom speakers. The same with Jord Modular speakers \$368.

10 HARMAN KARDON "NOCTURNE" SOLID-STATE HI-FIDELITY Stereo Music Systems. World's finest amnlifiers solid-state complete with stereo AM/FM receiver 50 watts of full usable power complete front panel controls for FM Radio, AM Radio record players, headphones. 2 room speaker switching. For further details write to Recorded Music Salon, 23 Collins Street, Melbourne.
8 Pioneer SA 400 amplifier, Gar- rard AT 6 4-speed turntable with crystal cartridge.
Wharfedale
8 -inch Bronze RS/DD speakers. TOTAL
$\$ 190$
The same with Empire 805 cart-- 0

We will care-pack and freight anywhere. If the goods you require are not listed write for our prices-you'll be delightod! R.M.S. are famous for selling the best quality equipment, and are indisputably the cheapest in Australia.

23 COLIINS STREET, MELBOURNE
Telephone 63-6257

WHOLESALE AND TRADE ENQUIRIES WELCOME

MICROPHONES OF OUTSTANDING QUALITY

MODEL MB 101
Dynamic Moving Coil omni-directional frequency response 40 - $18,000 \mathrm{cps}+$ or-2 D.B. Also available with directional characteristics. Price $\$ 62$ incl. tax.

MODEL MB 215
Dynamic; directional cardiod. Frequency response 50 - $18,000 \mathrm{cps}+$ or -2 D.B. Impedance 200 ohms. Price $\$ 70.50$ incl. tax.

MODEL MB 301
Dynamic Studio Ribbon, Cardiod. Frequency response 40 - 18,000 cps + or -2.5 D.B. Impedance 200 ohms Price on application.

Model M8250TR High and Low impedance directional cardiod ideal for use with high quality tape recorders. Price $\$ 20$ incl. tax Model MBI50TR High and Low impedance omni-directional. Price $\$ 14$ incl. tax.
These high quality microphones are manufactured in Western Germany and are as supplied to broadcasting and T.V. studios. throughout the world.
Stereo Headphones also available-full technical details sent on request.
nOW aVailable ex-stock
, SOMTEL INTERNATIONAL
(VIC.) PTY. LTD.
17 Rokeby Street, Collingwood, Vic.
Trade Enquiries: Invited from all States.
Phone Melbourne 41-1478

COMMENTARY

nput sensitivity. The voltages given ere are those required to give the ated power output (see 8).
'requency response. The range from 0 to $20,000 \mathrm{~Hz}$ covers all audible ounds. The qualifying $\pm 2 \mathrm{~dB}$ indiates the maximum amounts by hich the amplifier response may ary within this range, 1 dB (decibel) eing about the smallest change in :vel detectable by the human ear. pecifications which quote a frequency range" without this type f level qualification are meaningless. larmonic distortion. All amplifiers and to introduce this type of distoron, which consists of the spurious roduction of harmonics (simple mul-
stated, and may be a "weighted" figure -which means that the noise signal during measurement is passed through filters simulating the falling response of the ear at high and low frequences. Ratings greater than 50 dB may be regarded as acceptable.
6. Crosstalk. Some break through of the left channel signal to the right channel and vice versa is inevitable. The negative dB rating expresses the ratio of this unwanted signal to that in the "wanted" channel. A figure of -40 dB at mid-frequencies may be regarded as acceptable.
7. Power output. This expresses the electrical "size" of the amplifier - as the number of watts of electrical power it can deliver to the stated

Figure 4: The earth loop, (broken line) gives rise to mains hum. It is avoided by omitting the earth connection on the motor mains plug or the motor/ pickup earth lead
re 5: Showing right way to nect up some ular types of al plug. The l connectors drawn as seen t the free end ie plug, or the of the socket.

DIN PLUG

3-PIN AND 5-PIN DIN RECORD/PLAYBACK

2-PIN DIN SPEAKER
ples) of each frequency present in le inputt signal. The amount of the istortion (given as the total level of armonics as a percentage of the gnol level at, say, $1,000 \mathrm{~Hz}$) incease at higher levels, as shown .mounts less than 1% may be rearded as acceptable.
itermodulation distortion. For the ume reason (non-linearities in the ansfer characteristic) all amplifiers end to introduce intermodulation disrtion. The result is the spurious roduction of sum and difference freuencies corresponding to each pair f frequencies present in the input gnal. The amount of the distortion ; given as the total level of unwantd frequencies as a percentage of the evel of two test frequencies fed in at le stated ratio (and in valve ampliers is usually about four times the armonic distortion). Amounts less aan 3% may be regarded as cceptable.
ignal-to-noise ratio. This is quoted s the number of decibels by which te rated signal level exceeds the inerent noise level. This figure should aclude mains hum, unless otherwise
output impedance (see 9) without appreciable distortion. It is perhaps unfortunate that several alternative methods of specifying power have been introduced - two of which are used here. The "sine wave" method is generalty to be preferred and simpply states the RMS (root mean square) power attainable on steady tones. (Peak power would be twice this: peak power ratings are often quoted in America). The IHFM (Institute of High Fidelity Manufacturers-USA) definition of "Music Power" assumes that the DC supply voltage remains at the no-signal value. It tends to flatter amplifiers with badly regulated power supplies. In a good amplifier the LHFM rating should not exceed the RMS figure by more than about 30%
8. Power response. This important criterion specifies the bandwidth between the limits where the power output falls to half $(-3 \mathrm{~dB})$ for the rated distortion.
9. Output impedance. The figures given here are nominal and correspond to to the loudspeaker impedance required for optimum power transfer. Standard

KEEP

 THE RECORD STRAIGHTDo you have a lot of information that has to be collected daily? production statistics, library records, spare parts and inventory control, time sheets, etc.

Are you doing this economically and efficiently? Up to now perhaps you haven't been able to afford it at all. Have you thought of doing this job automatically?
We have a whole range of data acquisition equipment that will do this job for you quickly, efficiently and economically. You can collect the data on your premises for as little as $\$ 45$ a week, and then have it processed at a Data Centre.

COSILIOL DATA
australia pit limited
598 St. Kilda Road,
Telephone 5|-|32|

NOW distributed

The "Monitor" series dual concentric loudspeakers are the culmination of over 30 years' continuous research and incorporate many unique features including the revolutionary patented Tannoy magnetic shunt (possibly the greatest advance in loudspeaker magnet design over the past 10 years) giving a useful flux increase of up to 20%. This results in smoother response, better damping, improved transient response and higher efficiency.

Distributed through the Consumer Products Division of
AMALGAMATED WIRELESS (AUSTRALASIA) LIMITED
554 PARRAMATTA ROAD, ASHFIELD. 71 Q791

[^5]impsdances are $3.5,7$ and $15 \circ$ in the U.K., 4, 8 and 16 ohms in U.S.A. In genaral, the imped: need not be critically matched, the loss of efficiency resulting f the use of a $15-\mathrm{ohm}$ loudspeaker commonest impedance in Britain) ' a 3 -ohm transistor amplifier (a c mon value on the Continent) is f serious and should be avoided. question will be discussed in the instalment.
Connecting up: My earlier mentior loudspeaker terminal's leads me to important subject of connecting, pi of equipment together. After all, the cuit details interest only a few gre phone users, whereas we are all li to be faced with the need to con a pickup to an amplifier, to a 1 speaker, to a tape recorder, etc. Stran the fitting of plugs and the choice care of connecting cables are fiddling operations that some people into all sorts of trouble with them. avoid this trouble:

1. Use the right types of conne
2. Use great care in wiring.
3. Call in expert advice if you really stuck.

Let us first talk about the mains nections. Ideally, one - and only - of the pieces of equipment in gramophone installation should be u via a three-core cable and three-pin to a three-pin mains socket. The t longer, pin is the earth connection. H is the correct way to connect a tl pin plug. Strip back the outer cove from the flex end for a distance of 2 i necessary, bind the frayed ends of i with insulating tape. Position the fle that the still-covered portion is as inside the plug as it can go; now each wire to allow it to run to the rect terminal, plus $\frac{1}{2}$ in for win round the terminal. Strip the covi from the wires and wind the bane 1 clockwise to tighten. Connect the wire and the black wire to the " m : pins and the green wire to the " B a pin. Twist and wind the wire on to terminals in a clockwise direction so when the nut is tightened the wir tightened with it. Make sure there no stray strands of wire, fit the plug and screw up.

The reason why I have suggested only one unit should have an earth nection is to avoid what is called "earth loop." Stray currents and 1 netic fields, from transfonmers, etc., an ever-present source of 50 Hz Ir hum. These fields will induce bothers signals if a completed loop is allc to exist via earth.

In figure 4, for example, the c loop is shown as a dotted line. It be broken either by leaving the e wire off the turntable mains plug o omitting the earth connection betr the motor and the pickup. When a t or a tape recorder is coupled to an a lifier, the braiding of the co-axial si leads should normally be the only e route provided.

Signal connectors: It is a pity that e tive standardisation has not been ieved for the types of plug and so used in domestic gramophone equipn However, the sketches in figure 5 demonstrate the correct proce. for wiring the three most common ty namely phono, jack and DIN plugs.

The phono and jack plugs are simple ough since they consist of only one ve lead and one "earthy" lead (usually - braiding on a co-axial cable). The N (Deutscher Industrie Normenaus1uss) plugs appear in various formats. e standard style of three-pin, five1 and two-pin DIN plug are shown in ure 5 , but equipment manufactiurers Il sometimes alter the functions of the rious pins, so it is as well to check sir instruction leaflets before doing any ring.
The drawings of the DIN connections of the plug viewed from the free d, or the socket from the solder tags d. It will be seen that the central pin is invariably earthed. Pin 1 is the cord connection in both three-pin and e-pin systems (the latter type being ed for stereo) and Pin 3 is for playck. The two-pin system is widely used - loudspeaker connections and may be ed in a reversible version so that adig an extension loudspeaker may or y not mute the built-in loudspeaker. 1 other DIN plugs possess a key-way d are irreversible.
The next instalment will deal with idspeakers, the types available, ampor matching and positioning for stereo tening.

Wildlife Recordings

The sounds made by animals are a sular feature of B.B.C. radio and teleion programs about wildlife and en figure in programs. They are drawn im the B.B.C.'s collection of natural itory recordings, one of the largest colttions of animal sounds in the world, the headquarters of its Natural Hisy Unit at Bristol. The person responlle for building up this collection-and nself recording many examples in the ld-is its present librarian, the wellown naturalist John Burton. In a B.C. broadcast recently he talked about ; work to producer John Sparks.
"There are 412 discs in the library, presenting 748 species of animals and 0 birds," he said "It all began with Idwig Koch, the famous naturalist and oadcaster. Koch retired in 1951 and is succeeded by Eric Simms, who made 11 use of the first portable tape recorder d the parabolic reflector and added any new recordings to the collection." Burton said that in the last decade or , with the development of good reliable pe recorders, the number of recordists wildlife, amateur and professional, d snowballed. He bought quite a lot their recordings to make as representive a callection of world wildlife as issible. "It's very expensive for the B.C. to send me to faraway places like frica, Australia or South America to ake recordings, but I have contacts te, for example, Anthony Walker in hodesia who recently sent me a tape of ${ }^{1}$ Eastern Scrub Robin. Some of our cordists in Britain have sent me splend recordings. Sometimes an amateur thusiast sends me a recording of, say, very rare bird which may not be tech. cally perfect, but is of considerable hisrical, tropical and primitive interest, ir instance, a recording of a Great Reed "arbler." Recordings, he said, must be ee of extraneous noises and should be corded at a speed of not less than fips.

CONNOISSEUR - FOR Performance and reliability! The Craftsman II Turntable - a masterpiece of engineering 12in Turntable - 2 speeds - synchronous motor - only $\$ 45$.

THE BEST PICK-UP ARM IN THE WORLD?
MODEL 3009
SME
MODEL 3012

EXTRAORDINARY - A unique 3-way speaker system has been areated by Mastersound. Extremely small and producing an exceptional sound with very low distortion. $\$ 195$.

> 2 DUAL 1009/SK - SHURE M55/E - Goodmans Maxamp and two Maxim speakers-complete with base and cover.
> \$140 DEP. \$3.75 P.W.

4 Thorens TD150 - SHURE M75/E - Pioneer SM83 - Two "3LZ TEN" Tannoy in cabinetswith base and cover.
$\$ 176$ DEP. $\$ 4.07$ P.W.

The most up to date system in recorded reproduction which brings you to the space age in entertainment

By an ingenious plug in/ out system this single play back unit can be transferred from your home cabinet to any prewired Iocation which can be your car, caravan, boat, etc.

CRAIG is the only twinhead, 8 watt per channel, cartridge player with automatic ejection, and flap door against dust.

NOT JUST AN
OPEN DECK

In addition to our successful BOOKSHELF Cabinet, this is "BRASILIA" our latest design. Supplied with detachable legs, it will adapt itself to any furniture setting. For the first time children can be allowed to use high quality stereo without any risk of damage to equipment or high voltage shock. And . . . Become word perfect in French, German and Italian through our Language Tapes, each lesson repeating automatically until you're ready for the next. "BRASILIA" incl. car speakers, mounting kit, \$320.00. THE WORLD'S ONLY PARTY-PROOF PLAYER.

CRAIG 503 DELUXE WITH SPEAKER KIT, $\$ 185.00$.

Let your family enjoy today the play-back unil of tomorrow. Just make your selection of any pre-recorded 4-track tape cartridge, slide it into your DYNASTEREO and enjoy unmatched quality in sound reproduction.
The CRAIG DYNA. STEREO use exclusively the high quality 4-track endless cartridge with already over 10,000 different titles available, and fast becoming the standard cartridge.

THIS IS WHY YOU GET MORE WITH 4.

Call in for a convincing demonstration 29.337.

Exacto Engineering Piv. Ltd., 868 Prince's Highway, Tempe. 55-5036. BRASH'S: Australian Musical Industries, 112 Elizabeth St., Melbourne.

868 Prince's Highway, Tempe, N.S.W.

Custom Built

A phrase that means equipment specially tailored to your needs whether it is a console in timber or sheetmetal or a bracket to hold a component.

We are specialists in close tolerance work for the communications industry in light engineering, sheetmetal, timber or plastics. If your problem involves one or more of these fields, it will pay you to see usWE COULD HAVE THE ANSWER.

IBOUT DELAYED SOUND IN MOVIES, SATEllite RELAYS

A reader's question about loss of sound synchronisation in a television movie provides opportunity to have a closer look at the subject of sound sync. both in relation to films and to the very new subject of transmitting television via synchronous satellites.

During a recent TV film prcsentation was surprised to observe a serious loss s sound synchromisation. The sound illed for a second or so and when it sumed it was lagging the action by sout this amount. This situation pretiled for several minutes, and was quite sconcerting. Then the picture blacked it for about a second and synchronisaon was restored. How could this happen the sound and picture are on the same iece of film?
Fortunately our correspondent supied exact details as to the channel, e name of the film, and screening ate, so we took the opportunity to leck with the station concerned. They ere most co-operative, and provided the ,llowing explanation:
TV stations use 16 mm versions of andard 35 mm theatre release prints. hese combine the sound and picture lages on the same piece of film, as in e original 33 mm print, or as in 16 mm ints for conventional projection.
In any sound film system it is necesry to scan the sound and picture images different points in the transport sysm . This is because presentation of the cture image requires intermittent moveent of the film, a frame at a time, ist the projection gate. For obvious asons the sound can not be picked f at a point where the film is moving this manner. To overcome this probm , the sound is picked off at a point ter in the transport system - usually How the picture projector - and after e intermittent action has been removed
by an isolating loop and sprocket. The sound head provides further smoothing of the film movement by means of rotary stabilisers, and additional loops. so that it achieves virtually constant speed by the time it is soanned by the optical sound system.

To offset the difference between the sound and picture scanning points, the sound track is printed ahead of the picture by exactly the length of film required between the projection aperture and sound head. In the case of 35 mm films this is 19 frames. For 16 mm it is 24 frames. Set-up marks for both the projection aperture and the sound head are provided on the film leader and, provided these are correctly located when the projector is threaded, sound and movement must synchronise and remain synchronised.

However, mention thas already been made of the isolating loop between the picture and sound mechanisms and it is important that this be maintained. If it is altered for any reason, the 24 frame difference (for 16 mm) will be lost and synchronism will suffer. Damaged film is the usual cause of loop trouble, and loss of the sound loop is the usual form which it takes. For example, a faulty sprocket hole may result in the associated frame not being pulled down from the projection aperture, while the film continues to move through the sound
head. The effect of a lost loop on the film transport is so chaotic that, regardless of synchronising problems, it is usually essential to stop the machine and rethread it.

In the case we are considering, something like the opposite effect occurred. Apparently due to a faulty splice, the film jammed in the sound head for a period equal to 30 frames - about 1.25 seconds - during which time a 30 frame oversize loop was created between the picture and sound mechanisms. It was this stoppage which caused the brief loss of sound and the oversize loop which ruined the synchronisation.

One surprising aspect of all this is the fact that the system continued to operate in this condition. A 30 frame loop, travelling at 24 frames per second, can be an unwieldly thing, partioularly if confined in the space of a normal sound head feed system. It will usually wrap itself around one of the sprockets, resulting in several feet of chewed up film. The operator concerned must have been extremely fortunate on this occasion.

The manner in which the trouble was eventually cleared is a little obscure, some of the details having been forgotten by the time we made our enquiries. However. it is known that some projectors are so constructed that it is possible to stop the movement of film through the picture mechanism by releasing the pressure on the gate, although this can be a risky manoeuvre. Nevertheless, the symptoms described - the momentary loss of picture - suggest that something like this must have occurred. Apparently the cine operator released pressure on the picture gate

Artist's concept of a satellite configuration which Lockheed Missiles and Space Co. is to study for the U.S. Communications Satellite Corp. The aim is to develop a satellite which will cope with domestic television and telephony distribution throughout the U.S., as well as intercontinental television and phone traffic and VHF or UHF traffic to ships and aircraft. Two $6 x$ 9ft umbrella-like dishes are for transmission, while a smaller dish at the far end is for reception. Also at the far end is a pair of supplementary horns, one for receiving, one for transmission. The "wings" carry solar cells which power the vehicle.

Yamabishi

volt siliders
proved in the
Australian market
over several years
ranges 1 to 100 amps
single phase
1 to 30 amps three phase
standard (surface) and panel mounting types
nominal 240 V (single phase input or per phase)
nominal $0-260 \mathrm{~V}$ (singie phase output
or per phase)

SOLE
AUSTRALIAN
AGENTS

HOEART SYDNEY ADELAIDE MELBOURNE BRISBANE PERTH
 TOOLS FOR
INDUSTRY

PRODUCTION LINE MODEL SHOP LABORATORY SERVICEMEN TECHNICIANS HOBBYISTS and HAMS

PAMBRAKE 18" FODER
Bench mounting - weight 17 lb . Folds sheet metal to 21 gauge. Forms chassis. channels, etc. $\$ 21.94$ including Sales Tax. Postage: N.S.W., \$1.25; Vic. and Q'land, \$1.80; Tas., N.T. S.A. and W.A., $\$ 2.25$; N.Z., $\$ 2.00$.

TR14 Tapered Reamer, from to $9 / 16$, 75c.
ADEL NIBBLING TOOL
Cuts, notches, trims sheet metal like a punch and die. $\$ 7.50$
Replacement punches available.
(2)

HOLE PUNCH SETS
5RB (pictured) 5 punches from ${ }^{\text {in }}$ to 1 itin plus tapered reamer.
$\$ 7.00$

All prices quoted, except Panbrake, are Tax Exempt and post free within Australia. FROM RADIO SUPPLY STORES EVERYWHERE

Distributors: WATKIN WYNNE PTY. LTD., 32 Falcon Street, Crow's Nest, N.S.W.
it long enough for the sound sprocket take up the excess film, momentarily yoking out the picture while he did so. And while we are on the subject of und and vision synchronisation, it may interesting to note some figures which ire quoted recently on this subject. lese were the results of some experiints conducted in the U.S.A. and nada to determine how much error n occur without producing noticeable pairment in the presentation. Strangely ough, these investigations were not ompted by motion picture interests, t rather by those handling synchrons satellite transmission of TV signals. some cases of satellite transmission it more convenient to send the accomnying sound by an alternative route, ih as an international telephone cable. this case the sound will arrive at its stination ahead of the picture, due to * quite long round trip path via the tellite.
A synchronous satellite orbits some , 000 miles above the earth. By the ae we consider the angle between the ooming and outgoing signals the total th is unlikely to be less than 50,000 iles. At a speed of 186,000 miles per zond, this amounts to .37 second 70 mS) and, even if we subtract from is the time the sound takes to complete journey, the difference will still be bstantial and probably close to 300 mS . tis has been overcome in the past by zording the sound on a tape loop, th the replay head located the required mber of milliseconds away from the zord head. It was probably a desire know just how much tolerance was rmissible in such an overall system lich prompted the test.
The results of these are partioularly teresting, in that they shoy a different der of impairment depending on wheer the sound leads or lags the vision. cording to the report, ". . a just ticeable impairment is produced, for p.c. of observers, when the sound delayed 140 mS relative to the vision, when the vision is delayed 70 mS lative to the sound." From this, the clousness of a 300 mS vision delay will immediately obvious.
Reverting to our motion picture situain, what do these figures mean in ms of the number of frames by which loop can be in error before it is ticeable. At 24 frames per second, ch frame represents about 41 mS , so at a loop error of two frames in such direction as to delay the vision-i.e., loop that is two frames too smallsuld produce a more than noticeable ror.
In some 16 mm systems at least, this der of error is quite feasible without oducing any obvious malfunction of e film transport. Only by taking proper te of the set-up marks on the leader prescribed contours for the loop can urect operation be ensured.
In the reverse direction the tolerable ror is greater but, equally, the scope r error is greater. For example it would quire an oversize loop of four frames exceed the permissible sound delay, it there would be no great difficulty in commodating such a loop on some achines. So, once again, careful threadg is the only answer.
And, finally, we understand that some rge theatres deliberately modify the und/vision relationship to allow for e time needed for the sound to reach
the back of the hall. With sound travelling at about $1100 \mathrm{ft} / \mathrm{s}$ (approx.) it will suffer a detay of 100 mS for every 110 ft it has to travel to the listener. At a distance of about 150 ft the delay will be close to 140 mS tolerance and, at greater distances, could be objectionable. It would seem logical, therefore, to advance the sound as much as possible to offset this, provided it did not exceed, for the front row patrons, the 70 mS maximum permissible sound lead.

Imported dynamic microphones seem to be sold with about nine feet of shielded wire attached. Is there any objection to extending this lead by twenty or thirty feet, provided shielded wire is used?
We take it that you are referring to the type of microphone which is currently being sold for about twelve to fifteen dollars apiece, and used for non-professional public address and tape recording.

Most such units are of the so-called "high impedance" variety, meaning that they incorporate an output transformer and are meant to feed into a preamplifier grid or base circuit having an input impedance of upwards of 10,000 ohms. The output lead is usually a single, shielded conductor, with an outer plastic sleeve.

An additional length of shielded wire would increase the total capaoitance shunted across the output transformer secondary and reduce treble response. The order of such treble loss would depend on the actual impedance of the microphone and input circuit, and on the amount of added capacitance. Naturally, the exact nature of the extension cable is most important in terms of shunt capacitance.

As a matter of interest, we connected to our R/C bridge a measured length of plastic-coated shielded hook-up, characterised by a stranded inner conductor and a relatively thin layer of black insulation between it and the earthed braiding. Such cable is commonly used for shont runs within an amplifier. This wire turned out to have a capacitance of about 150 pF per foot and a mere 6 or 7 feet, representing about $1,000 \mathrm{pF}$, proved sufficient to drap the output of a typical high impedance dynamic microphone by something over 3 dB at 5 KHz . Therefore, unless quite severe treble loss could be tolerated, a long length of such cable would be out of the question.

On the other hand, so-called "microphone" cable, having much the same inner conductor, but surrounded by a slightly thicker layer of clear insulation, exhibited a capacitance of about 47 pF per foot, indicating that about 20 feet of such cable could be used as an extension for a similar treble loss of 3 dB at 5 KHz . Some cable would appear to have lower capacitance again than this but it is more bulky and more expensive - perhaps, unacceptable so.

While a modest extension is therefore practicable, assuming the use of suitable cable, the best course, really, is to buy a low-impedance version of the microphone, with separate output transformer - assuming this to be available. The cable can then be extended over any likely distance, using either single-wire or double-wire shielded cable, according to what is already attached to the microphone.

The mic/grid transformer can then be fitted into the cable a short distance from the amplifier. It should only be installed in the amplifier chassis if it is a type thonoughly shielded against fields from the power transformer; it also means that everything fed to the input channel must then pass through this transformer, which may or may not be convenient.
Finally, here's a tip for those who are not too heavy-handed and who are prepared to attempt a modification at their own risk: The high-impedance dynamics can usually be disassembled to reveal the output transformer in the body of the case. It can be taken out and the speech coil wining run straight to the existing output cable. Keeping careful note of the original connections, the output transformer can then be housed in a protective shield and wired into the cable adjacent to the amplifier. A stout protective and antimagnetic shield can be contrived from a water-pipe junction or a short length of ferrous pipe, with the ends plugged to retain the leads and the whole thing wrapped in tape.

Another tip: Don't measure continuity through microphone transformers with an ohmmeter. DC can adversely affect the core material.

Whatever your interests are in amateur radio, there's a Stott Radio course for you. Easy to follow. Practical. Modern. Guidance all the way by top-flight radio engineers. Radio for amateurs Learn the exciting skills of building modern radio receivers. Learn about the latest advances in electronics, design, construction and operation. Let Stott's show you how. Amateur Operator's Certificate Course: Broadcasting is fascinating. Stott's offer an entirely new course that enables you to sit for the Amateur Operator's Certificate of Proficiency

Examinations with complete confidence.
Get full details now on Stott's Radio Courses.

Stotts

TECHNICAL CORRESPONDENCE COLLEGE 159 Flinders Lane, Melbourne. 383 George St., Sydney. 290 Adelaide St. A Brisbane. 45 Gilles St., Adelaide. 1130 Hay St., Perth.

ANNOUNCING．．．

attractive new rigid plastic she packs for instant＇roll－out＇selectiol

NEW CONVENIENCE－the plastic pack never leaves the shelf－simply opi the swing back and＇roll－out＇your tape．

NEW PROTECTION－now your collector tapes are double protected－ plastic pack plus sturdy transparent container．

These attractive new shelf packs reflect the soul quality in every BASF recording tape．The tape th recorder manufacturers recommend；the tape with t Mirror Finish surface that gives 5 times longer life your recording heads；the tape that belongs in yo sound library．

SPECIAL ECONOMY PACK

For working tapes and day－to－day use the new BA： economy pack is ideal．See it now at your tape recorc dealer－you get the same quality tape for less cost！

 冫OMPATIBLE PICKUPS - NOT RECORDS!

The attitude of the major English companies to compatibility is summed up by the phrase; "Not compatible-Stereo only."

By Neville Williams

Last month in these pages, under the ading "How Compatible Is Compatle?" we explained the background to e so-called compatible stereo/mono scs now being sold in Australia and jewhere. We pointed to the factors uich rendered it self-contradictory to nsider at one time a technique which suld: (1) Preserve the full stereo potenll of the $45 / 45$ recording system and) Produce a record without signifint vertical modulation and therefore one to damage by at least a proporm of existing mono pickups. Really it ,iled down to producing stereo records, lieved of extremes of vertical modulam , with the hope that the repercussions
playing them with mono pickups suld be minimal. Mention was made at the major English companies were tt in sympathy with the ide'a.
Hardly was the article in metal, when :ws came to hand of a press release , the EMI Company in England. We 10te:
"One of the most important-ever developments in the record industry is revealed in the announcement today by EMI Records that from next July their classical long-playing records will be released in stereo only. A de. cision regarding stereo-only 'pop' LPs will be taken later in the year.
"The move does not make obsolete the mono record player. In fact, by using any modern lightweight record player pickup the stereo-only LP can be played on the mono record player. But EMI point out that for best results they recommend the use of a stereo pickup cartridge - now marketed at a reasonable price - to convert the mono record player. True stereophonic reproduction will, of course, be obtained only from a complete stereo reproducer."
Commenting on the proposed move, a ookesman for EMI went on to explain:
"We decided to take the initiative in introducing stereo-only classical records because we are quite sure it is an inevitable development largely made possible by the tremendous progress in record reproduction techniques and equipment.
"This stereo-anly decision will benefit both the record dealer and the
resord buyer. The dealer will not have to order both mono and stereo LPs, and so duplicate his stock, and consequently he will be able to offer his customers a much wider range of recordings for selection."
Superficially, the announcement by EMI simply brings it into line with other major European companies who have already swung over to stereo only. ("Australian Financial Review" 26/5/67 quotes Telefunken, Polydor, Philips and D.G.G. as having produced only stereo or stereo/compatible versions for the last 12 months.) The vital difference is that EMI is not lending its support to the idea of branding its records as "compatible," in the sense that they can be played without damage by mono pickups. On the contrary, EMI would like to see record users re-equip with stereo cartridges, whether or not they proceed to a full stereo replay system.

Writing in "The Gramophone," John Borwick is apparently in full accord with the attitude of EMI. He says:
"In practice, these compatible records were a source of disappointment to a number of record-buyers
who found that distortion or groove jumping took place with certain types of mono record players. Indeed, I have just heard that one budget-price record manufacturer in this country who recently brought out 'compatible' records has gone back to producing separate stereo and mono versions.
"So the 'compatible' record, which is essentially a stereo disc in which the maker attempts to avoid tracking problems on older mono pickups by subtly reducing the vertical element in the complex recorded waveform, has not been a success. It would seem that EMI, Decca and other large manufacturers were right in having nothing to do with this type of technical compromise. In record reviews in 'The Gramophone' we have simply treated these records as stereo and judged them accordingly."
In further discussion, John Borwick points out that discs recorded to the 45/45 stereo system are-and always have been-truly compatible in that they contain information in a form where it can be extracted and played in either stereo or mono. Likewise, a. stereo cartridge is truly compatible in that it will track a $45 / 45$ disc and will deliver either a stereo or mono signal according to the way in which its outputs are utilised. A conventional mono cartridge is NOT necessarily compatible, because it may lack the ability to track the vertical modulation component. This being so, non-vertical-compliant cart-

World Record Club

In their May, 1967, brochure. The World Record Club refer to the EMI announcement and point out that, alieady, $12 \frac{1}{2}$ per cent of their releases are in stereo (or stereo-compatible) only. The proportion is likely to rise steeply and, by mid-1968, virtually all new classical releases will be in stereo only. In answer to the question "What can you do about it?" the club advises:
"You can replace your mono equipment with stereo. But this could be very expensive - and possibly unnecessary. The next b.est thing to do is to replace, if possible, your mono playing head with a stereo cartidge and stylus. In most cases this will give you trouble-free reproduction, though of course without stereo effect. Lastly, if your playing-head is sufficiently light and the stylus assembly of sufficiently high compliance, you can play stereo and stereo-compatible on your existing mono equipment. You will get an acceptable mono sound - but you will permanently inhibit the stereo character of the playing grooves, and produce in effect what is a mono record-which will never again be truly effective as stereo. This in any case must be regarded as a last resort. Playing stereo records with a mono cartridge and stylus-even under optimum conditions-is asking for trouble, even though technically possible.
"The course mono members choose to follow is a personal decision and will obviously be influenced by a number of factors. But certain it is that mono is going out-and going out fast."

Sony TC. 260 Steree
List Price \& $179 / 15 /$. Pay less with or without trade-in. 2 speeds, plays 7 in reel. Plays stereo/mono. 4-track. Horizontal or vertical operating position. big SAVINGS

Ampex 800 Stereo
Llst Price £244/10/-. Complete portable outfit including recorder with power amplifiers. Carries Exclusive allinclusive 1 -year warranty. Hear this one! TRADE-IN \& TERMS

National 776
List Price $£ 199$.
Save £40. 4 track, 2 channel. Stereo/mono. Automatic and Manual reverse, Automatic stop. One for the family.

BIG SAVINGS

Our Tape Recorder Prices are Lower than any Discount House in N.S.W.

Mallonal 755 Seereo
Llst Price $8149 / 10 /$. Ask Peter Clark about the special price. You'll snve money! 2-channel stereo/mono, 4-track, 2 speeds plus 2 extra external Hi-Fi speakers. TRADE-IN \& TERMS

The Mallional 705
List Price $268 / 5 /$. We can't tell you the big savings you'll make on this one. Ask Peter. Double-shield "Golden" heads. 2 -speeds. P.A. system.

BIG SAVINGS

AKIA M8 List Price £280/6/. AT Magnetic Sound we match any price in Australia on Akai machines. We've the complete range of models too! TRADE-IN \& TERMS

BRAND 5 New U.S.A. brand. 5in-7in reel. 1,200ft 25/, 1,800ft RECORDING TAPES
$30 /, 3,600 f t$ in reel $79 / 6$, 5in reel $600 f 1$ 18/, 1,200ft 28/6.

ridges should be sacrificed, not standari of ultimate performance. Ho goes on t stress that the industry should lend i weight to seeing that mono players as equipped - or re-equipped - wil cartridges which will play full, stere recordings. We quote:
"This can be achieved in two way First, a stereo cartridge could 1 fitted, with the two live leads and ty two screens respectively joined ${ }^{4}$ gether to form the mono outlet. Th solution is perfectly acceptabie, but does mean a slight waste since tu two sensing elements, etc., must ha cost more to make than a mor transducer. (Also, no stereo equiy lent to the existing mono cartrid may have been marketed.)
"The second approach is to fit mono cartridge with the right chara teristics, namely:

1. Fine stylus with tip radius 0.0007 in or less.
2. Low playing weight.
3. Reasonably high vertical cor pliance and low mechanical I sistance.
4. Similar impedance and outp voltage rating to the mono cal ridge previously fitted.
"This latter approach has now a ceived official backing and I ha been told that, at a meeting on Ap 5 , representatives of the equipmes component and record manufacture reached agreement on a working pr cedure. In future, mono pickups w be marked on the box or on t cartridge to show whether they a suitable for playing stereo recorr They will have styli in the ran $0.0006 / 7$ in and the test will be the ability to track a special 7 -inch ts record produced by EMI Recors This has gliding tones at +22 dB wi reference to $1 \mathrm{cM} / \mathrm{s}$ and has alrea been supplied to interested manufa turers.
"If this recommendation is compli with, we may expect all future Briti mono record players and radiogras to be fitted with compatible cartrides - something that Philips and Dea for example, have been doing for number of years. There will then no longer any need for mono recor to be marketed. The stereo record c be bought with equal confiden by owners of stereo and mono reco players - though, of course, or the former will reproduce the spat effect imparted by the twin channe The EMI records will be norm stereo - they have always dislik the word 'compatible' - but k from July carry some clear stateme to the effect that they may be play with a suitable mono pickup.
"It follows from the EMI Pd Release, referred to earlier, that $t]$ discussion of compatibility is longer an academic question involvi just a few record importations. Own of stereo equipment are not mu concerned, but all owners of mo record players should take steps ensure that their machine is able track stenzo records satisfactorily."
At this point, it is appropriate append a statement by Cosmocord Lt manufacturers of the well known "Ace brand pickup cartridges. The headi itself is significant, in view of the fo: going remarks:

STEREO-COMPATIBLE MONO
 PICK-UP CARTRIDGES

me of the major recording companies nnounced to the trade, in May, 1966, 1at as from some future date mono P records will no longer be availble. Only stereophonic pressings witl lereafter be marketed and these note's rill explain how this change in tarketing polioy will affect the design nd choice of mono pick-up cartridges.
stereo recording has vertidal as well 3 lateral modulations of the grooves. Then playing such a record with a tono cartridge, the ventical modulaons are of no interest and normal rono reproduction is provided by the iteral modulations. If record wear is ot to be excessive, however, the tylus of the mono cartridge must e capable of moving vertically in impathy with the vertical modulaons and without undue restraint. This the most important respect in which le stereo-compatible mono cartridge iffers from the usual type of mono artridge whioh is designed only for le playing of mono records.
e restraint imposed upon the movelent of the cartridge stylus is of rree kinds. The stiffiness of the cartdge mechanism is predominant up , about 500 Hz . Stiffiness is the recipocal of compliance; the lower the mpliance, the higher the stiffnessi. rom about 500 Hz to about 2000 Hz , le mechanical resistance of the cartdge mechanism is the major flactor nd at high frequencies still, the s-called tip-mass is the controlling uantity. Every one of the three forms f restraint must be suitably minilised in order to produce a satisactory stereo-compatible vartridge. It quite useless, for instance, to achieve dequate vertical compliance on a suposedly compatible cartridge whilst not Iso achieving sufficiently low vertical p-mass. A stereo record, if played ith such a dartridge, would suffer ery serious wear.
subts have been expressed as to thether high-output mono oartridges an be made stereo-compatible but zese doubts are unfounded. The point I that high-output cartridges inevitably ause rather more record wear than heir low-output counterparts but, proided that a high-output and supposedy compatible cartridge produces no nore wear on a stereo record than its on-compatible version would on the auivalent mono record, then that cartidge is truly stereo-compatible. Such artridges are not difficult to produce. lere are two other main requirements if stereo-compatible cantridges and hey are:
Low Vertical Sensitivity. Although it is vital that the cartridge stylus easily follows the vertical modulation of the stereo records, it is equally important that these vertical stylus movements produce no significant output at the cartridge terminals. For undistorted mono reproduction from stereo records, the vertical sensitivity of the cartridge should be at least 15 dB lower than the lateral sensitivity at low and middle frequencies. At the higher frequencies some increase in vertical output is permissible.
Tip Radius. Many mono cartridges
are fitted with tips of 0.0007 in0.001 in radius but, for the satisfactory playing of stereo records, the tip radius should be no greater than 0.0007 in . Stereo-compatible cartridges must, therefore, be fitted with tip radii in the range 0.0005 in0.0007 in .

EDITOR'S NOTE: Amplion (A'sia) Pty. Ltd., of 29 Major's Bay Rd, Cancord, N.S.W. are representatives in Australia of Cosmocord Ltd. They advise that, as from the beginning of this month, July 1, the GP 91-1 cartridge (medium output crystal) and the GP 91-3 (high output crystal) will be supplied with stereo compatible diamond styli. These cartridges may be used to play stereo records with no more wear than would be normal for any other cartridge involving the same order of output and tracking weight. Though not confirmed at the time of writing, it would seem logical to assume that similar remarks would apply to the equivalent ceramic cartridge GP 92-1 mentioned in our review, January, 1967, p. 97.

WHO WAS ANNIE LAURIE?

Listeners to the B.B.C. General Overseas Service "Scottish Magazine" program recently heard from Gordon Irving that "Annie Laurie" is the most popular love song in the world today. Annie really was flesh and blood, and Maxwelton House still stands, not far from Penpont village in Dumfriesshire; her boudoir is a delightful old world alcove on the first floor, and dew still lies on the gowan daisies along the "bonnie braes."

The composer of the song was William Douglas, a young army captain, born in 1672. He came from Kirkcudbrightshire in the south-west of Scotland, and fell in love with Anna Laurie of Maxwelton, and immortalised her in this song. But Douglas did not marry his Anna. Perhaps she jilted him, or her parents objected; he married Elizabeth Clark from Lanarkshire, and Anna married a rich young man, Colonel of the Horse, in the army of William III, Alex Fergusson, the owner of a goodly house not far from Maxwelton Braes. It is often thought, even by Scots, that Robert Burns wrote "Annie Laurie," but it was humble William Douglas, her unsuccessful suitor. Later, Lady Jane Scott of Buccleuch came across the verses, added the third verse, and the song caught the public fancy, and has remained popular ever since.

TEL-LEIGH-TUBES

Tel-Leigh-Tubes have pleasure in introducing "Golden View" tubes at a most competitive price.
These tubes are fully reconditioned and rescreened and are acceptable by insurance companies.
Broken necked, marked or discoloured screened tubes are acceptable for exchange (lon-burn excepted).

ALL SIZES IN STOCK - INCLUDING LAMINATED TUBES

"Tel-Leigh-Tubes" the top-quality regunned tubes are also available.
All tubes as advertised are first-quality and are guaranteed for 12 months.

TEL.LEIGH.FUBES, 51 REUSS STREET, LEICHHARDT, SYDNEY, N.S.W.
Country and interstate customers: Please rail old tubes to Petersham Station.

[a Classical THEV1ews By MULIAN RUSSEIE

Lively and sensitive "Water Music"

HANDEL-Water Music (Complete), no reference is made to the origin of Hague Philharmonic Orchestra con- the edition, but that doesn't trouble ducted by Pierre Boulez. Concert Hall Stereo SMS2379.
In terms of the publicity he receives Pierre Boulez is the world's leading avant-garde composer of the 1960s. Boulez, by the way, is a modest man who doesn't go out of his way to seek pub. licity. The nature of his work brings it to him. for composing is far from being his only activity in the musical world. He is a conductor of wide European repute, as at home in the playing of the romantic school (Wagnerian operas) as he is in the conducting of the works of his contemporaries. Moreover I have heard him conduct - among the music of other schools - that of his compatriot Debussy with a sensibility unmatched, and certainly not excelled, by any other conductor alive or of recent memory.

In addition to these activities he holds classes for advanced composition in several European cities during the course of the year.

Yet, knowing all this about Boulez, I must still confess astonishment at having found his name associated with Handel's "Water Music." This seemed to me to be right out of the run of his multiple interests. And I was still more astonished when, after having play ed only a few bars, I realised that I was in for a rare treat in a performance that was at once lively, sensitive, and perhaps, more importantly, essentially muscular. In fact, I did something that rarely happens when I listen to a record for the first time in order to review it. I stopped it, and repeated movements just for the sheer pleasure of hearing them again as soon as possible.
"Style" during the last generation has become a highly controversial feature in the performance of eighteenth century music. Double-dotting, the frequent use of unmarked appoggiaturas, trills, acciacciaturas and other ornaments are now added to the bare bones of the score in an attempt to reproduce the music "as it was originally played." And although these activities have the approval of, and are often initiated by, scholars such other important factors as the considerable rise in pitch since the eighteenth century which has put works into higher keys than those in which they were originally written, and the equally important change in timbre of many of the wind instruments, are ignored, and there are still arguments, many of them bitter - and some supercilious - about the authenticity of modern editions.

The sleeve notes state that the edition offered by Boulez is complete and I suppose that might be safely accepted. Three suites are included, in F Major, D Major and G Major. Unfortunately
me one tiny bit. For whatever it is it sounds fine-good enough to relieve me of the burden of any academic argument on its account. And the playing of the Hague Philharmonic under this versatile musician is in turn exhilarating, beguiling, and immensely impressive. The execution of the many trills and other decorations are faultlessly neat and crisp, and in some way or other Bou'ez has managed to make the woodwind seem to recreate eighteenth century timbre in the sounds they produce from their instruments. The horns chuckle merrily in some movements and supply support of grand solidity in others. As to the strings, they can assert themselves without pugnacity whenever necessary or reduce their tone to a murmur without losing quality in passages where they are asked to do no more than accompany. One of the most important requirements in music of this kind, in which every suite is made up of contrasting movements, is a judicious choice of tempos used in a way that sets one off against another. Boulez' tempos are exquisitely judged with this in mind and his rhythms full of bounce.
There is plenty of presence in the good, clean-cut engineering and I, for one, don't expect to hear a more enjoyable account of the suites than this in the foreseeable future.

HAYDN - Symphony No. 100 in G (Military).
Symphony No. 102 in B Flat. New Philharmonia Orchestra conducted by Otto Klemperer. Columbia Stereo SAX05266.
My remarks about Boulez' sprightliness in his playing of the eighteenthcentury music noticed above might be more easily grasped if, after having heard them, you put on these two Haydn Symphonies conducted by another musician of still more impressive credentials as a conductor, Otto Klemperer. Klemperer, in these two symphonies, uses one of the world's finest orchestras, the New Philharmonia, and they play for him with all the generosity of which they are capable - and that is plenty. But the overall effect is one of serious application to the task in hand without any trace of the manifest enjoyment in their work that their Dutch colleagues under Boulez introduce into the Handel.

While this treatment can, if you're temperamentally compatible to it, be condoned in the B Flat, which is probably the "biggest" of Haydn's symphonies, the "Military" was conceived and written in much lighter mood and need not have been delivered quite so ponderously. Make no mistake, the orchestral playing
is never less than great. It's the attit toward this essentially graceful m that makes me regret more than u the passing of a conductor like Beecl who knew so well how to endow it , a lift that not only made one n conscious of its countless ingenuities added to it a dimension absent in Kl perer's reading. But then, Beech: Haydn was never approved by the (tral European School, the member: which were always dismissing it as pant. If you are of the same mind t | Klemperer performances should suit very well. In any case the sound is -though the composition of the o estra sometimes hints at a rather n weighty body of strings than is custon in such music-and the players' ex tion unexceptionable.

BEETHOVEN-Concerto for Violin Orchestra, Op. 61. Yehudi Men (violin) and New Philharm Orchestra condueted by Otto K perer. HMV Stereo OASD2285
The tendency of Klemperer to pon ousness, noted above was, I was prised to find, communicated to Men in his new recording of the Beeth Violin Concerto. It is Menuhin's fo recording of the work. He has pl: it twice with Furtwangler-once supe -and again with Silvestri, in whick evinced some tenseness. This was bably because of interpretative diff ties that cropped up between the for Silvestri is a very mercurial musis as may be remembered by those heard him during his Australian some years ago when, at one concer chopped about ten minutes off the u performing time of the "Eroica."

But in this performance Menuhi -and I can think of no other wol ponderous, for the first time in my experience of his work. Menuhin is 50, but his recent recordings show signs of any loss of the pontaneity lyricism I had hoped to find in his Beethoven. Klemperer's must be a strong influence indeed to have rest in a first movement so rigidly discipli

The Largo is, on the whole, be but, give and take a few eloquent sages, I found little even here to t me. And perhaps the most disappoin movement of all three is the last, Rondo, which I know Menuhin make bounce along as daintily as could wish, but which, this time, so very flat and wooden. Does Ment feel the work nowadays the way he p it here, or was "the old man's" sonality too much even for him at hearsals? I'd love to find out.

BRUCKNER-Symphony No. 7 it Major. Hague Philharm $\begin{array}{lll}\text { Orchestra } & \text { conducted by } \\ \text { Schuricht. } & \text { Concert Hall } & \text { St }\end{array}$ SMS2394.
Bruckner, if played with pious sol nity - and there are many temptat to introduce such an atmosphere the music of this very godly man can be one of the greatest bores I kr But this is something that Schuricht ways carefully eschews in his π readings of Bruckner. His tem though often a shade faster than I other Brucknerian conductors, never gest disrespect. Indeed he can even 1 along a movement like the well-kn Adagio in this symphony without conveying the idea of irreverence.

His Scherzo spins along like a Viense waltz, at a pace that even the most dulgent might for a while think exssive until a beautiful sensuous Trio ction provides just the right contrast balance everything into a nice formal ttern. And his Finale comes as close jauntiness as it is possible to make sound, again without any disrespect1 suggest:ons. This record, by the way, as awarded the French Grand Prix du isque, an unusual distinction for a uckner work from a French jury, for uckner is practically unknown in ance.
The recording was made in 1963 when huricht had already turned 80. But ere is no evidence of any slackened tality in his control of the orchestra. deed two years later I heard him in olland conducting the Hague Philharonic Orchestra in the Scheveningen ursaal. Schuricht was then badly ippled and had to be helped on to the atform supporting himself by two bow-length crutches. With some efrt he got himself propped up against e rostrum and went on to conduct
fine a performance of Brahms' D ajor Symphony as any I can remem:r. The grand old fellow died only st year. The sound quality in this oncert Hall issue is excellent.

RUCKNER-Te Deum. Teresa StichRandall (soprano); Sonja Draksler (contralto); Murray Dickie (tenor); Frederick Guthrie (bass). Vienna Youth Choir. Vienna State Symphony Orchestra conducted by Heinz Wallberg.
IAHLER - Kindertotenlieder. Hilde Rossel-Majdan and Vienna State Symphony Orchestra conducted by Heinze Wallberg. Concert Hall Stereo SMS2442.
I am afraid that I cannot recommend is performance or recording of Bruck?r with anything like the same enusiasm. Both the playing and enneering are heavy-handed and the choir impressive only in the quiet passages. nd even here the basses sound too ght to balance the other members of ie choir. Teresa Stich-Randall sings loyably for the most part and Murray ickie has a pleasing tenor voice. The :her soloists are unimpressive.
The Mahler is in every way better. , this Hilde Rossel-Majdan's voice is oduced with admirable evenness rroughout its range with a very attracve reediness in the low register. Her ading of the songs is simple and unfected without an arch moment. The alance between the soloist and orchestra consistently stable, but the engineering cks bloom, a fact you can easily check y plaving the last song. Unfortunately 0 copy of the songs' texts accompanies te record, wh:ch people unfamiliar with lem might find inconvenient.

$$
\star \quad \star \quad \star
$$

IVORAK-Symphony No. 6 in D Major, Op. 60. "Carnaval" Overture, Op. 92. London Symphony Orchestra conducted by Istvan Kertesz. Decca Stereo SXL6253.
Decca have embarked on a project to scord all the Dvorak symphonies with ertesz and the London Symphony. This the first to reach Australia-and very npressive it is. The work is strongly,

LITTLE SHORT OF

REVOLUTIONARY

MICROGROOVE "CERAMIC" CARTRIDGE fitted with diamond stylus

for stereo or mono microgroove records

Micrographs of a groove recorded with a 10 Kc signal taken from three copies of the Decca stereo frequency test record SXL 2057.

AFTER ONLY 1 PLAYING with a good, average-priced cartridge. Arows show damage

NO DAMAGE AFTER 250 PLAYINGS with Decca Deram.

THE DECCA DERAM DOES LESS DAMAGE AFTER 250 PLAYINGS than the average cartridge DOES AFTER ONLY ONE

The Decca Deram has a tip mass of 0.6 milligramme; its compliance is 9×10^{-6} $\mathrm{cms} /$ dyne (lateral) and $5 \times 10^{-6} \mathrm{cms} /$ dyne (vertical); tracking weight 2.5 gms.; frequency response $\pm 3 \mathrm{~dB} 18 \mathrm{c} / \mathrm{s}$ to 18

Sole Australian Agent:

BRITISH MERCHANDISING PTY. LTD.

Shaw House 49-51 York St., Sydney, N.S.W. Telephones 29.1571 (3 lines)

[^6]

People throughout the world have come to really enjoy this particular feature, because of the superb results.
The Cross-Field System is actually composed of two heads facing one another and so mounted where by their centers are slightly off, as shown in the diagram. This combination of bias and signal heads makes possible clearer responses than the ordinary conventional head, even at slow tape speeds. Therefore, any tape can be modulated over the entire spectrum with maximum fidelity.
MODEL X-100D SOLID.STATE STEREO PLUS CROSS-FIELD HEAD CUSTOM
DECK $* 4$ track stereo monaural record playback $* 4$ speeds ($17 / 8,33 / 4,71 / 2$ and 15 ips optional) * Frequency response- 30 to $23,000 \mathrm{cps}$ at $71 / 2 \mathrm{ips}$

MODEL AA-5000

110 WATTS SOLID STATE STEREO PREMAIN AMPLIFIER

* Silicon power transistors * Electronics protection circuit $*$ Filters for high and low $*$ Completely O.T.L. system

* SPEAKER SYSTEM SW. 130
aKAl ELECTRIC CO., LTL HIGASHIKOJIYACHO OHTA.KU TOKYO JAPAA
N.S.W.: Magnecord Australasia Pty., Ltd. 210 Cla ence St., Sydney Victorla: Magnecord Sales Service, 3-Albury Rd., North Balwyn Queenslan Chandlers Pty., Ltd. 399 Montague Bd., West En Brisbane S.A.: Magnecord Sales \& Service, 8 Arths St., Unley W.A.: Tedco Pty. Ltd., 579 Murray St Perth
not overwhelmingly, influenced by hms and abounds in easily rememed but never commonplace melodies, rhythms much sprightlier than any r devised by Brahms himself. It also ws Dvorak already a master of the a, the ending of a movement by a cogent, exciting bars.
Nlthough Kertesz is Hungarian by h he knows just how to get that lilt , the playing that only the finest zonductors of Czech music-and most those native born-seem able to do. ipite an occasional Brahmsian thickenof the inner voices of the orchestra general effect is one of great brilice. And Kertesz and the L.S.O. have \checkmark been together long enough to have yed themselves into complete accord, any rate in this type of music.
f you know Dyorak only by such rks as the "New World" and the mphonic Variations for Orchestra," e is a piece that should win the affec1 of anyone looking for something \checkmark from an old, but seldom visited, nd. And for good measure there is "Carnaval" Overture, as fiery as anycould desire and, if a trifle on the iwy side, not a whit the worse for that son. Everyone in the orchestra seems be enjoying themselves hugely, as I Strongly recommended.

ORAK-Symphony No. 5 (No. 9, new style) in E Minor, Op. 95 (From the New World). "Carnaval" Overture, Op. 92. Philharmonia Orch. estra conducted by Carlo Maria Giulini. Encore. Stereo S330EX9261.
'ORAK-Symphony No. 5 in E Minor, Op. 95 (From the New World). Chicago Symphony Orchestra conducted by Fritz Reiner. RCA Vietrola VICS1155.
I can also recommend the Giulini per. mance of this, the most popular of all orak's symyphonies, originally resed as a Columbia recording but now tilable on the low-priced Encore label. ulini does not perhaps glitter quite so ghtly as Kertesz but still manages to the symphony with more than the srage amount of excitement, and this hout any freakish accenting or wild apos. Perhaps the greatest difference the two conductors' approach to this nposer is Kertesz' spontaneity. Giulini es the impression of having studied : work more carefully, perhaps because his Latin origin, though he always jids any hint of staleness, or even dantry.
Moreover he manages to win some autifully warm sounds from his :hestra without sentimentalisation of : music, even where this can be so iily added, as in the cor anglais theme the famous Largo. There is a slight idency, which I noticed more in the aerzo than elsewhere, to record the odwind just a trifle larger than life. herwise the sound is first rate. And this disc, too, you have a rousing fformance of the "Carnaval" Overture it might lack ever so little of Kertesz' arkle, but is eminently exhilarating vertheless.
After listening to this performance I d it difficult to recommend anything out the Reiner version. Reiner makes orak sound much too formal in comrison to the two other conductors menmed above. The whole of RCA's disc devoted to the "New World" with-
out a fill. The engineering is efficient but sometimes the sound is a little woolly.

THE ELISABETH SCHWARZKOPF SONG BOOK. Songs by Schubert, Schumann, Wolf, Debussy and Rachmaxinoff. Seven Songs from Wolf-Ferrari's "Italian Song Book." Sung by Elizabeth Schwarzkopf (soprano) with Gerald Moore (piano). Columbia Stereo SAX. 05268.

The Schubert and Schumann songs in this deliciously relaxed recital will probably all be known to most readers interested in lieder. In the Schubert group you will find "Der Einsame," 'Der Jungling an der Quelle," "Die Forelle," "Heidenroslein," "Claudine von Villa Bella," "Liebe Schwarmt auf Allen Wegen," and "Seligkeit." In the Schumann, "Myrthen," "Widmung," "Leis' Rudern hin," and "Wenn durch die Piazza." The Hugo Wolf, too, should be fairly familiar, "Wenn du zu den Blumen gehst," and "Die Zigeunerin."

But there won't be many who have heard of the Wolf-Ferrari bracket before. They are settings of Tuscan folk poems, some gay, some scornful - in fact you'll find them in everv mood that you'll find lovers - in verse. All are entrancingly tuneful, a fact that will not surprise those who know the composer by his operas, "The Secret of Susannah," and "The Jewels of the Madonna." Schwarzkopf sings them with endearing simplicity and utterly without condescension. But there is one, in which a girl seeks a dead lover, that Schwarzkopf makes sound very dramatic indeed, a reminder of the great gifts of characterisation she uses to such good purpose in opera.

In the whole of the recital there was only one song that disappointed me Debussy's "Mandoline," in which, though Schwarzkopf herself seems far from confrontable. there is the compensation of Gerald Moore's exquisite accompaniment. Moore is his usual incomparable self throughout. And though I haven't mentioned it so far, the recital ends with a performance by the two artists of "Daniny Boy" that is so surprisingly beautiful that it may well bring you to reconsider the quality of this melody, debased though it has become by banal associations.

DELIUS-Concerto for Cello and Orchestra. Jacqueline du Pre (cello) and Royal Philharmonic Orchestra conducted by Sir Malcolm Sargent.
Songs of Farewell (for double chorus and orchestra) Royal Choral Society and Royal Philharmonic Orchestra conducted by Sir Malcolm Sargent.
A Song Before Sunrisc. Royal Philharmonic Orchestra conducted by Sir Malcolm Sargent. Record Society S6223.
The soloist in this is the very gifted young English girl who recently made so impressive a recording of the Elgar Cello Concerto. And her performance of the Delius is just as eloquent, youthfully romantic but never fulsome. The work itself, for the most part, is serene and placid with its single reaching towards a climax subsiding before it achieves

SHURE

Unidyne III Microphone Model 545

Small and strikingly handsome with Cardioid pick up pattern that approaches the theoretical ideal. Reproduces the human voice with remarkable fidelity. A favourite choice for singers and entertainers. Low frequency characteristics eliminate boominess making it especially good for pick up of drums and brass instruments. Response 50 to 15000 Hz .
Impedance. DUAL-Low or High z. Cable--18 foot 3 conductor shielded. List price $\$ \mathbf{\$ 3 . 4 0}$.

Unidyne II Microphone Model 55S

Famed throughout the world for ruggedness and icliability. Specially recommended for line quality public address, theatre stage sound systems. recording and remote broadcasting and low gain lape recording.
Response- 50 to $15000 \mathrm{H} \%$.
Impertance choice of Jow. Medium or High 7. selected by Impedance switch at rear of microphone. 18 foot crable supplied.
List price $\$ 91.15$.
Send for details of these remarkable microphones.

New Unisphere Microphone Model 585SB

Featuring special litters that provide protection from wind and breath sounds. Particularly suitable for use in locations of poor acoustics and where wind creates a problem. Comes complete with shock mounted cartridge. ON-OFF switch-detachable 15 foot two conductor cable and swivel adapter.
Response- $50-12.000 \mathrm{~Hz}$.
Low Impedance- $56.5 \mathrm{db} \quad(0 \mathrm{db}=1$ M/W per 10 microbars); 1.05 millivolts microbar.

List price $\mathbf{\$ 6 3 . 7 0}$.
Distributed throughout Australia byAUDIO ENGIMEERS PTY. LTD.

342 KENT STREET, SYDNEY. 29-6731.

* 2-State Service for Hi-Fi Enthusiasts

sula asdic STEREO HI-FI

Address: 166D Glebe Pt. Rd., Glebe Phone 68-1453

Specialising in quality Cabinets to any design . . . Complete systems including Radford, Quad Fisher and Leak. Installations in the home all good brands supplied and guaranteed.
Management \& Sales: W. Bardsley-Smith.
ENGINEERING: H. BEN WILSON, S.M.I.R.E.E., M.S.I.T.A. Phone 68-4283. Authorised Service Centre for Quad, Goodman's, Ferrograph, Rogers, Roland, Trio, Beocord, B. \& O., Labcraft, Radford, K.E.Fo, Wharfodale.

BRISBANE AGENCIES STEREO HI-FI

Address: 78 Wickham St., Valley, Qld. Phone 2-6931

Steve Eklund, Proprietor. Specialised installations for homes, halls and institutions. Cabinets to any design. Complete Systems including Radford, Quad, Fisher and all good brands. Agents for ADC, Laberaft, J.H., Radford, K.E.F., Roland. All work guaranteed.

ENGINEERING:

No job too small or too big in $\mathrm{Hi}-\mathrm{Fi}$. Qualified engineers for all major sorvice.

* FREF 16 PAGE BOOK!

gramophome taperecorde súcol

166D Glebe Rd., Glebe, N.S.W. Phone 68-1453 Please forward, free and post free, your 16 page book on this unique Tape Recorder.
| Name \qquad Address
a catharsis. It is all beautifully lullir. music - if vou are prepared to giv yourself up to it without too much crit cal reserve. It is the Delius of "Brit Fair" though that is, to my mind, far superior work. The concerto is tl sort of work you can listen to comfor ably while thinking of something els There is nothing showy in the solo pa Not even a cadenza. But it goes on thought too long in the same vein. T/ engineering is adequate, but no more.

The "Songs of Farewell" set words 1 Walt Whitman to mellifluous sound, we performed bv both singers and orchestr but I must add a special word of prai for the deliciously played epilogue by \mathfrak{t} orchestra.
"A Song Before Sunrise" was dedic: ed to Delius' young friend and pr tege, Phillip Heseltine (Peter Warloc and is an enchanting aubade, expressil perhaps as well as anything Delius ev wrote, his deep pantheistic love of eart In form it is small, even miniature. B it is unremittingly shapely, tend colourful and seraphic. It is play with manifest affection by Sargent al his orchestra. And now that Delit name has started to reappear on the t cord catalogues after much too loi an absence, perhaps we can look fo ward to re-recordings of such fine wor as "Appalachia." "Paris," "A Mass I ife," "Brigg Fair" and others?

IUSIC OF SHAKESPEARE'S TIM A collection of over 40 sougs al instrumental pieces with Wilfr Brown (tenor), Eileen Poult (soprano), Darien Angadi (bi soprano), Mary Thomas (soprant Patricia Clark (soprano) and othe) The Dolmetsch Consort. Soloists a Viols of the Schola Cantormm Ba liensis and others. Record Socie Stereo S6217/8.
This is a most enjoyable antholo compiled and in some cases edited the lutenist Diana Poulton who was 1 doubt prepared to receive the criticis aimed at all anthologists - the ; clusion of some items and the omi sion of others. To my way of thinki she has done an excellent job in : sembling two discs of music for 1 most part attractive, and never less th: interesting. But in a program of tr length there was bound to be some th appealed more than others. On t whole the two are unfalingly entertai ing.

The eight soloists sing their vario contributions with skill and good music taste. Instruments used in other piec include viols, lutes. virginals, recorde tabors and others of more recent origi That many of these are played by t Dolmetsch Consort will ensure pic pective buyers of the quality of the po formances.
Not all the pieces are to be foul in Shakespeare's plays. Don't be st prised if a few are not even mention in them, and were included on 1 grounds of only the most distant 1 lationship. You will even find sor early Jacobean pieces in this elegant 1 cital. You may, too, be mislead by t numbering of the various items in t sleeve notes (which, by the way, a satisfyingly informative both to schola and tyros) but a glance at the reco labels should very soon put things rig for you to settle down to some ve enjoyable listening.

Reviewed by Glen Menzies

HE LEGEND THAT IS LAWSON: Read by John Clements with John Manifold and his Bandicoots. W.

 \& G. L.P. 25/5006.With such a scarcity of Australian aterial in the spoken word field, it is pleasure this month to be able to dete the whole of this space to two P.'s featuring some of the best work two of our most widely read poets. was only the other day that a letter the daily Press questioned whether lything was being done to commemote the centenary of the birth of Henry iwson. This record released just in ne for Lawson's birthday on June 17th akes a very good start.
Henry Lawson was born in a tent on goldfield at Grenfell in N.S.W., in 167. His father was a Norwegian lartermaster, turned digger, carpenter, ntractor and settler. His mother, 10 looked after the local store and post ice, was a remarkable woman who er became a pioneer in the feminist svement and founder and editor of a agazine for women's rights. It was from r that Lawson's literary imIses came. Educated at the Eurunde-- State School, his childhood was mar1 by the onset of deafness at the age nine and an unhappy home life caused the conflicting temperaments of his rents. He worked on the family selecn and at casual bush jobs and later jved to Sydney with his mother where became apprenticed to a coach build-

Inevitably, Lawson became one of the wwing army of job seekers, but in : meantime he was writing verse and ing to get it published. It was not til he reached the age of 20 , when e of his verses was published in the ulletin," that his literary career began 1 he turned more and more to writing a living. The decisive event in his life, wever, was when the "Bulletin" sent n off on a six months tramp from urke to Hungerford on the Queensid border. Lawson was 25 and out of s experience came the inspiration for ne of his best work.
The 14 ballads in this album include ny from this period. They reflect Lawi's compassionate nature, and his feel; for humanity, which is often tinged h a note of loneliness and melansly, as in "The Sliprails and the Spur," ndy's Gone With The Cattle." The acity of man and beast is conveyed the slogging test of endurance depictin "The Teams." In contrast to these re is the wonderful onward momenn of one of the poet's happiest inrations, "The Lights of Cobb \& Co.," 1 the lyrical and romantic charm of eedy River."
The theme of social protest is upperst in "Faces In The Street" a "poem revolt" against the social ills of Auslian city life which still makes a werful impact with its sincere impasned utterance, quote:

"They lie, the men who tell us,

 for reasons of their own,That want is here a stranger, and that misery's unknown."
Also on a note of protest, but with a "Chaplinesque" touch and a measure of sly humour, is the well known, "When Your Pants Begin To Go." Another good ,choice is "Middleton's Rouseabout," a short, but clever character sketch of a "drongo" type who eventually takes over his boss' property.

This is a well chosen selection which will help to make new friends for the poet and may encourage some to look further into his short stories - an area in which Lawson is acknowledged as one of Australia's greatest writers. In what seems a rather odd arrangement, the first ballad on each side of this record is sung by solo voice with guitar, on side one a woman's voice of somewhat foggy quality, and on side two a rather better male voice. I feel that these could have been dispensed with entirely, in view of the very capable and professional reading by John Olements who makes no attempt to be aggressively Australian but takes a straightforward approach, with a little dash of characterisation when called for by the poems themselves.

BEST OF BANJO PATERSON: Read by John Clements with John Mani. fold and his Bandicoots. W. \& G. L.P. 25/5003.

This album makes an ideal companion to the "Lawson" and gives the listener the opportunity for a direct comparison of the two poets' styles. But there is no question of Paterson and Lawson being diametrically opposed to each other. They are, indeed, viewing the same landscape through different eyes; the differences in outlook arising from matters of temperament, upbringing and experience of life. Banjo Paterson himself put it this way, "We were both looking for the same reef - but I had done my prospecting on horseback with my meals cooked for me, while Lawson had done his prospecting, on foot and had had to cook for himself."
Although most of us live in an urban environment in this country, these ballads still have a unique way of evoking for us the atmosphere of the Australian countryside and man's place in its landsaape. Paterson gathered material from a widely scattered community which included cattlemen, sheepstealers, shearers and drovers, the small township with its bush pub, the country race meeting and that indispensable animal, the horse.

Banjo Paterson's technical mastery of his chosen medium is quite apparent here with "Clancy of the Overflaw" which begins the recital. This poem is now so famous that it can be all too easily taken for granted; that is, until one once again falls under the spell of:
And the bush has friends to meet him, and their kindly voices greet him,
In the murmur of the breezes and the

And he sees the vision splendid of the sunlit plains extended,
And at night the wondrous glory of the everlasting stars.
And equally, one can't fail to be caught by the gusto of "The Man From Snowy River" which gave the title to Paterson's first book published in 1895, a remarkable best seller with 10,000 copies sold in the first year. The story of another hair raising ride, and one which puts mechanical means of transport finally in their place, is "Mulga Bill's Bicyole."
Several of the ballads here reflect the writer's dry ironic humour and feeling for a well-told tale in the form of an anecdote, e.g., "The Bush Christening," "The Geebung Polo Club" and "The Man from Ironbark" with its wonderful description of the idlers in the barber's shop:

There were some gilded youths that sat along the barber's wall.
Their eyes were dull, their heads were flat, they had no brains at all.
I listened with amused fascination to the "Disqualified Jockey's Story;" here the poet reveals a perfect ear for the sound of a character and a special feeling for action in the description of the running of the rigged race. But in "The Traveling Post Office" I found quite touching the faith in country communication out on the central western plains where mail is just addressed "c/o Conroy's sheep."
The 12 poems in this recital give an exciting and satisfying glimpse of Banio Paterson's talents as a balladist, and offer a variety of challenges to the reader with marked differences of pace, inner contrasts and possibilities for drama and character depiction. John Clements once again does very well in making the most of the material; these are sympathetic readings with the right touch of warmth and informality. Microphone placement is intimate but never overpoweringly so.

I am sorry that the texts of the Lawson and Paterson poems were not included. Even roneoed copies would be better than none at all. As on the other album, the first tracks on either side are sung; side 1, "A Bushman's Song" by a male singer and side 2 , a very disappointing version of "Waltzing Matilda" by a female singer. At the moment there are far too many recordings of this song by indifferent singers, and as it still remains one of Banio Paterson's most inspired creations I feel it deserves much better treatment.

These two albums are major additions to the local spoken word catalogue and have the added attraction of being released on the W. \& G. Blue Label senies which are bargain priced at $\$ 2.50$ each.

printed oirouits

Specialist in Printed Circuits, Coding, Artwork to Order, Prototype Service.

67 Howard Ave. Dee Why N.S.W. 9822056 Boxes - Mixers - Battery Chargers - Oscillators - Bridges - Parts Supplied for Projects in Electronics (Aust.), Wireless World, Practical Wireless, Electronics World, Electronics Illustrated, Practical Electronics, etc.

3-BAND DOUBLE CHANGE RECEIVER, MAY, 1966.

4-CHANNEL AUDIO-MIXER, FEB., 1966-1967.

5-BAND DSB TX, NOV., 1965.

INSTRUMENTS.
1 Sin Wide Range C.R.O.
3in C.R.O. (1966).
3 3in C.R.O. (1966).
C.R.O. Elecronic Sw.

5 C.R.O. Wide Band Preams.
6 Standard Audlo C.RO.
8 Project Multimeter $20 \mathrm{~K} / \mathrm{V}$.
Meterless Voltmeter.
Trans Mllivoltmeter (A.C.).
1 Noise-Distortion-Millivoit-
meter.
1966 - VTVM.

* 1960 Audlo OSC.
- 1962 Audlo GEN.
6.Band OSC. RF and AF.

Trans Service OSC
Trans Audio OSC.
D/R A/F Meter.
Simple Signal Injector.
Trans Sisıal Tracer.
Trans Wave Meter.
G.D.O. Adaptor.

Wide Ranse G.D.O.
1966 Baslc Test OSC.
Square Wave GEN.
XTAL Locked STD.
Electronic Tuning STD.
Pattern GEN.
Trans Pattern GEN.
5.5 and 36 MHZ

Sween and Marked GEN
Silicon and Marked GEN.
Silicon Diode Swees GEN.
Silicon Diode Noisc GEN.
1906 R.C. Bridge.
${ }^{1966}$ R.C. Bridge
74 DC-DC 140 W. 24 V IN.
Direct Reading Impedance Meter. HIGH FIDELITY AMPLIFIERS.
Simple Proximity Relay Alarm. MONO UNITS.
$\begin{array}{ll}\text { Electronic Anemometcr. } \\ \text { Light Beam Relay Alarm. } & 76 \mathrm{HI} \text { Mullard }{ }^{3 .} \text { 3-3 }\end{array}$
43 Eiectronic Stethoscope. 78 Mu'lard 5-10.
44 : Valve and Translstor Tester. 79 Mullard $2-20$.

80 * Wireless Worid 20-20 20w. rUNERS.
STEREO (Trans.) UNITS.
81 Mullard 3-3.
82 Mullard $5-5$ (Trans.).
83 Mullard 10-10 (Trans.). 84 Muliard $10-10$. 85 *Wireless World 20-20. 86 Playmaster Unit 3. 87 Playamster Unit 9. 88 Playmaster Twin 10. 99 Playmaster 101. (Trans.)
90 Playmaster 105 (Trans.).
91 Playmaster 113 (Trans.).
P.A. and GUITAR.

AMPIFIERS.
AMPIFIERS. 9210 Watt Stand. or Guitar.
9325 Watt Standard.
9325 Watt Standard.
9435 Watt Standard.
95100 Watt P.A.
9735 Watt Guitar.
9850 Watt Guitar
9920 Watl Golden Series.
100 Playmaster 102 Guitar.
101 Playmaster 103 Gultar.
CONTROL UNITS AND
PREAMPS.
102 Playmaster No. 9.
103 Playmaster No. 10.
104. Playmaster No. 104.

105 Playmaster No. 111.
106. Playmaster No. 112.

108 Mullard 2 V . Unit
109 Mullard 3 V . Unit.
110 Mullard Preamp and W/B
10 Mulard
11 Transistor Mono Prearns.
112 Transistor Stereo Preamp.
113 S川/Trans. Mono Preamp.
114 F.E.T./Trans. Mono Preamp.
115 F.E.T./Trans. Stereo and Pre
$16 \mathrm{amp} \underset{\sim}{\mathrm{DYN}}$ MIC. PREAMP.
117 4-CHAN. Audio Mixer.

118 P'master Unit Style.
119 P'master 114.
120 Mullard Wlde Bond Tuncr ant Preamn.
Philips 121 Philips M'watt Hi-Quality RECEIVERS
122 Fremodyne 4.
122 Fremodyne 4.
123 Communications
1251965 Communications RX
125 Amateur Band 10.
127 Amateur Band 10 . Band D/Chanse $\mathrm{S} / \mathrm{Het}$.
127 3-Band D/Change 128 / H
${ }_{129}$ ALT. T'sistor Car Radio.
129 Transporta 7 (RF).
131 Little General 1961.
132 3 Band 8 Transistor.
133 3-Band 3. (AC),
134 Interstate 5 (AC).
135 Ail Wave T'sistor 3.
${ }^{\circ} \mathrm{Kit}$ Release Date - Ausust
TRANGMITTERS 1967
136144 MHZ Linear Final (50 w).
137144 MHZ TX (20w).
138144 MHZ TX (75w).
139144 MHZ TX (18w).
140144 MHZ S.S.B. TX.
141 3-Band AM. TX.
142 Basic 3-Band TX.
143 S-Band DBS TX.
144 S.S.B. T.
V.F.O. UNITS.

145 Remote V.F.O.
146769 HF and
14

146769 HF and VHF .
147 All Transistor.
MODULATORS.
148 Modulator 50 w .
149 MOD-PA and P/Supsly Unit. CONVERTERS-RECEIVER.
150 Short Wave Unit.
151 2-Band S/Wave Unit.
1523 -Band S/Wave Unit.
153 Basic S/Wave Unit.

STHEE A TOP FAVOURITE...

Enjoy your leisure time and build

MINIWATT TWIN 10 STEREO - COMPLETE KIT $\$ 79.50$

Excellent frequency response. Low distor. tion figure. High in. put sensitivity. All controls self-contala. ed. 10 watts per channel.
LARGE STOCKS OF - SPEAKERS, TRANSFORMERS, RECORD PLAYERS, TAPE DECKS, VALVES, DIODES, TRANSISTORS, MICROPHONES, INSTRUMENT CASES, and all other items - write for your price list.

ELECTRONIC
 DEVELOPMENTS

EMPIRE-WORLD'S MOST PERFECT MONO- STEREO CARTRIDCE

Manufactured in U.S.A.
Sole Agents for Australia-TRUE FIDELITY

WITH EXCLUSIVE "MOYING MAGNETIC CONE" STYLUS

EMPIRE CARTRIDGE 888/888P/888PE/888E/888SE

featuring is degree vertical tracking angle

armstrong WORLD'S BEST AMPLIFIER

MADE IN ENGLAND

Sole agents for Australia: TRUE FIDELITY - 23 Collins Street, MELBOURNE
TTI INTEGRATED STEREO AMPLIFIER
Shown in optional case of solid teak and vinyl. hide.
The 2.21 Amplifier is designed for use primarily vided for the higher output ceramic and crystal pickups.
At its price the 221 represents a major breakthrough in high fidelity amplifiers. Never before has an amplifier of this quality. sensitivity and power. incorporating all these faclities been avallable in this price range.

TECHNICAL SPECIFICATION

The specification refers to overall performance and this should be borne in mind when comparing figures with amplifiers and control units quoted separately.
Power Outpus
Frequency Response Power Response Harmonic Distortion

Hum and Noisc Negative Feedbask Output Impedance Crasstalk
Channel Matching
Balance Conerol Treble Conerol Bass Control Loudness

Rumble Filter

10 watts push-pull per channel, R.M.e
$30-20,000$ c.p.s. $\pm 1 \mathrm{~dB}$.
35-20,000 c.p.s.--TdB.
Less than 0.5% at $1 \mathrm{~K} / \mathrm{cs}$ measured at 8 watts output = IdB.
55 dB below rated output.
15 dB .
Alternative 4, 8, 16 ohms.
Rise time 6 micro-secs.
Better than 40 dB .
$=1 d B$.
Range of - 10 dB each channel
$12 \mathrm{~dB},-12 \mathrm{~dB}$, at $10 \mathrm{~K} / \mathrm{cs}$.
Switched. Superimposes increase in extreme bass and creble at low volume. -6 db at $35 \mathrm{c} . \mathrm{p} . \mathrm{C}$. Vicrensing at io verfiequen-

Treble Filter
Input Sensitivity

Tape Recording
Valves \& Semi-Conductors
Power Supplies

Weight
Dimensions
$8 \mathrm{~K} / \mathrm{cs}$. with slope of 12 db per octave above this f́requency.
Five pairs of stereo inputs as follows: Five pairs of stereo inpurs as
Pickup I, Tape, Radio. 80 mV at 2 M ohms. Pickup 2 (magnetic pickups) 3.5 mV at 50 K . Pickup 2 (magnetic pickups) 500 mV output. Low impedance.
$4 \times$ ECL86, $2 \times$ ECC83, $2 \times$ ACIO7, $2 \times$ OC71 2×8 YII4.
AC 200-250 voles. Dual voltage (100.130 ,
$200-250$ volts) to order.
Consumption 70 watts.
Net. $14 \frac{1}{\mathrm{l}} \mathrm{lbs}, 6.6 \mathrm{kgs}$. Packed $19 \mathrm{lbs}, 8.6 \mathrm{kgs}$.

	Width.	Depth.	ight.
ins.	$12 \frac{2}{6}$.	10\%.	42.
cms.	31.4.	26.9.	12.
ins.	132.	11.	$5 \frac{1}{4}$.
cins.	34.0.	27.9.	13.4.
ins.	12 t .	二	$4 \frac{1}{2}$.

You need no technical or electrical knowledge to install Armstrong units. The interconnection is simplicity itself and a comprehensive manual, supplied with every unit, gives straightforward instructions for installation and operation. For the technically minded full servicing and circuit data are also given.
TRUE F\|DEL\|TY c. pinczewskı

For complete brochures on the Armstrong and Empire equipment and further information, write to:
RECORDED MUSIC SALON, 23 Collins Street, Melbourne. Telephone 63-6257
Wholesale and trade enquiries welcome

VARIETY FARE
 "ELDCTRONICS Australia"
 Staff Review Panè

puntunal

3 BILLY GRAHAM LONDON CRUSADE CHOIR. 2000 Voices. Crusade Choir conducted by Cliff Barrows. Stereo, RCA LSP-3698. Also available in mono LPM-3698. Interest: "New" Crusade songs.
Performance: Massive, authentic. Quality: Good.
Stereo: Impressive spread.
he Lendon Crusade, conducted durJune, 1966, in Earl's Court, turned to be the most massive and most strating of any crusade ever coned by the Billy Graham team. Il attendance at meetings excceded 0,000 , the largest single meeting at nbley Stadium, supplemented by [V topping 100,000.
lassed choirs are no new feature of crusades but I doubt that any ir ever sounded more massive, more dinely spontaneous than these 2,000 es, drawn from London and its enns. Not only this, but they have ten completely away from the range yymns that seemed to have become ade "standards" in earlier years. he London choir sings: Heaven 10 Down And Glory Filled My -Praise, My Soul, The King of ven-Hallelujah, Praise Jehovahn Jesus Came-O Happy Day-Ye es, lift Up Your Heads On High here's A New Song In My Heart arely Goodness And Mercy-I Have ided To Follow Jesus - He's Got Whole World In His Hands-'Tis 'vellous And Wonderful-Give To God Immontal Praise.
record I can thoroughly recomd, particularly in view of Billy ham's approaching visit to Sydney. N.W.)

£ INCOMPARABLE MORMON

 CHOIR OF ENGLAND. Conductor, R. H. Barton, Jun. Organist, H. Robinson Cleaver. Stereo, Decca SKL-4819.Interest: Excellent choir.
Performance: High standard.
Quality: Very good.
Stereo: Effective.
ncomparable" is quite an adjective ive up to, particularly for a choir 300 voices which had practised toer for only one day prior to the ing of this recording. Incomparable? raps not, but you won't find many er examples of massed voices in the ext of Gospel singing. Of special rest is the playing of H . Robinson iver, an organist whose name I have come across for quite some time. the console of the large pipe organ Colston Hall, Bristol, he produces o beautifully phrased accompanits, with occasional bass notes that bring a gleam to the eye of any enthusiast.

Nct all the hymns are known to me but they are all very acceptable in the context of Gospel music: Let The Mountains Shout For Joy--Sweet Is The Work-The Lord's Prayer-The Builder-Abide With Me-I Walked Today Where Jesus Walked-God Of Our Fathers-Holiness Becometh The House Of The Lord-Eternal LifeStranger Of Galilee-Thanks Be To God-Love At Hame-One WorldCome, Come, Ye Saints.

Recorded before a large audience, each number is heard in complete silence but followed by applause and. in one interlude, by a baby's cry which someone must just have stifled until the last notes of the track had faded! Though the exception rather than the rule, the applause lends a "you are there" atmosphere and, incidentally, provides a most impressive demonstration of how stereo can spread sound right across one wall of the listening room.
Yes, an excellent reccrd. (W.N.W.)
SWEET HOUR OF PRAYER: The Ray Charles Singers. Stereo, Calendar (Festival) SR66-935. Also available in mono R66-35.
Interest: Favourite Gospel hymns. Performance: Mcdest but capable. Quality: Good.
Stereo: Modest.
Re-released on the economy Calendar label, "Sweet Hour Of Prayer" contains 13 very well known Gospel melodies, sung in simple fashion by what sounds like a fairly small though competent group. Most of the numbers are sung with a minimum of accompaniment but, in one or two, the electronic organ backing reaches somewhat incongruous bass-heavy proportions.
The tracks: Sweet Hour Of Prayer -Softly And Tenderly-In The Gar-den-In The Sweet By And By-Beautiful Isle Of Somewhere-I Love To Tell The Story-Softly Now The Light Of Day-The Old Rugged Cross -There Is A Happy Land-We Gather Together To Ask The Lord's BlessingBrighten The Corner-Let The Lower Lights Be Burning-Now The Day Is Over.

Not a record that I could get very enthusiastic about but one that, at the price, could bring pleasure to those interested in simple Gospel hymns, for their own sake. (W.N.W.)
WONDERFUL $\stackrel{\star}{\star} \stackrel{\star}{\star}$ PEACE. Tennessee Ernie Ford with the Jack Halloran Singers. Mono, Capital T-2557. Interest: Popular singer.
Performance: Vocally excellent. Quality: Good.
As a singer of Gospel songs, one has come to expect a first-rate performance from Tennessee Ernie Ford and this album poses no exception. Whether singing with backing or a capella or reciting the sacred verse, his
voice is full, smooth and rich. Generally, the Jack Halloran Singers also rate a good mention but I was not so happy with the instrumental accompaniment on side 1. In particular, the slap bass seemed altogether too prominent, too "tubby" and too random. In fact, as if the producer had sensed the prcblem, the same criticism cannot be levelled at side 2.

The hymns, all well known, are Crown Him With Many CrownsWonderful Peace-Beneath The Cross Of Jesus-Come, Thou Almighty King -I Love Thy Kingdom, Lord-The Beautiful' Garden Of Prayer-Lead Kindly Light-Grace, Greater Than Our Sin-The Name of Jesus-Jesus, Lover Of My Soul-Saviour, Again To Thy Dear Name.

In short, a good disc as far as Tennessee Ernie is concerned but, to my mind, let down somewhat by the arrangements on side 1. (W.N.W.)

SPECTACULAR BRASS AND

VOICES. Band and Songsters of the Salvation Army Congress Hall. Stereo, ATA (Festival) SATAL932,195. Also available in mono ATAL-932,195.
Interest: Sydney band, chorus.
Performance: Rcbust.
Quality: Good.
Stereo: Normal.
This is an album which should find ready and automatic acceptance by all those with a Salvation Army background, or with an ear for the Salvationist style of music. With a history dating back to before the turn of the century, the Sydney Congress Hall Band comprises 40 players drawn from

New Unisphere Microphone Model 565

Features superb feedback-control and Uniform Cardioid pick up patternspecial filter assemblies effectively control breath and wind noises. Excellent reproduction of voice and musicIndoor or Outdoor use-hand or stand operation.
Comes complete with swivel adapter and 18 foot three conductor shielded cable.
Response-50 to $15,000 \mathrm{~Hz}$.
Impedance-DUAL-Low and High Z.

Low $\quad Z-57 \mathrm{db} \quad(0 \mathrm{db}=1 \mathrm{~m} / \mathrm{w}$ per 10 microbars) . 141 millivolts/microbar. High $\mathrm{Z}-54 . \mathrm{db}$ ($0 \mathrm{db}=1$ volt per microbar) 1.88 millivolt/microbar.

List price $\$ 104.40$.
AUDIO ENGINEERS PTY. LTD.
342 KENT STREET, SYDNEY.
29-6731.

N EYY Receasen! IN HI-FI STEREO EQUIPMENT BY CLASSIC

 Based on the R. \& H. Playmaster 106 ant 101 Amplifiers with these added feature

- Loudness control giving bass boost at low volume.
- Sensitivity switch - normal or wide band.
- Provision for tape recorder with separate record-pla switch.
- Calibrated dial available for all States showing mai stations in larger type.
- Fully guaranteed.

SPECIFICATIONS COMMON TO BOTH UNITS

- Inbuilt high gain tuner with a frequency coverage of 530 to $1,600 \mathrm{~K} . C$. . EM84 tuning indicator giving accurate tuning with ease, o channel tone control stage with separate bass and treble controls. input facilities with switching for pick-up and stereo or mono tape rect

106 UNIT WITH TUNER

- Output 8 watts per channel (16 watts).

Incorporating Ferguson type O.P. 412 grain orientated output iransformers giving a frequency response of 20 to 30,000 cycles.
$\$ 115.50($ ($57 / 15 \%)$

106 AMPLIFIER WITH GARRARD CHANGER

Type 3000 changer fitted with 9th Sontone ceramic cartridge and diamond stylus and two Magnavox 8 WR or Rola 8 CM . $8 \mathrm{jn} \mathrm{Hi}-\mathrm{Fi}$ speakers.

Output 11 watts per channel (22 watts).
Incorporating Ferguson type O.P. 387

- Incorporating Ferguson type O.P. 387 grain oriented output t formers siving a frequency response of 20 to 30,000 cycles.

101 AMPLIFIER WITH GARRARD CHANG Type AT6 changer HI-FI SPEAKERS
Type AT6 changer fitted with Sonatone 9TA ceramic cartridge diamond stylus and two Rola 12 PX 12 In speakers or two Philips dual cone $\mathrm{Hi}-\mathrm{Fi}$ 8in speakers.

THE NEW MULLARD BOOKSHELF MINI SPEAKER UNITS

As featured in "Mullard Outlook," April, 1966, issue.
These units designed by Mullard and Magnavox engineers compare favourably with imported B/S Speakers costing more than iwice the amount and are ideal where space is limited. Incorporates the Magnavox 6WR 6in Speaker and the new 3TC Mk 11 tweeter frequency response, 50 to 18,00 cycies. Power rating maple or walnut.

Avallable in $71 / 3$ or 15 ohm impedance.

CABINET
DIMENSIONS
$18^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime}$

PLAYMASTER BOOKSHELF LOUD SPEAKER SYSTEM

Complete unit, built, wired and polished in walnut, teak or maple.

\$30 (£15.0.0)

Post and packing:
N.S.W. \$2.00, Interstate $\mathbf{\$ 3 . 0 0}$.

Complete kit of parts less Cabinet but including Speakers, Inductance, Condenser, Resistor, Innabond and Speaker Silk.
$\$ 17.50$ each Poist and packing
Available $71 / 3$ or 15 ohm impedance.
\$27 (£13/10/-) each
Post and packing: N.S.W. \$1.50, Interstate $\mathbf{\$ 2 . 5 0}$.

CABINET
DIMENSIONS

NEW SUPER BOOKSHELP SPEAKERS as featured in December '66 "Electronics Australlia." Finished in Teak, Walnut or Maple $\$ 39.00$ each, postage $\$ 2.00$.

NEW AMPLIFIERS AND TUNERS BASED ON THE PLAYMASTER 106 AND 107

107 AMPLIFIER AND TUNER

\$79.50 (£39/15/-)
FREIGHT EXTRA

107 AMPLIFIER

- Output 5 watts per channel (10 watts). Ferguson output transformers
sponse of
with
30 to ${ }^{2} 20,000$ cycles.
6AN7. Valves, used: 12AT7, 2-6BQ5, and 6 CA 4 rectifier.

SPECIFICATIONS COMMON TO BOTH UNITS

- Inbuilt high-gain tuner with a trequency coverage of 530 to 1.600 KC
- Two-channel tone control stage with separate bass and treble controls.
- Switching facilities for pick-up and stereo or mono tape recorder for record or play-back.
- Loudness control giving bass boost at low volume.
- Chassis plated and mounted in attractive metal case finished in grey with control
- Dimensions: $131 / 2$ in $\times 51 / 4$ in $\times 11 \mathrm{in}$.

THE ABOVE AMPLIFIERS SUPPLIED WITH THE NEW GARRARD I,000 CHANGER WITH
TWO MAGNAVOX 8WR OR ROLA 8CMX HI-FI SPEAKERS
107-\$116.75 (£58/7/6)
FREIGHT EXTRA
$106-\$ 141.25$
106 AMPLIFIE - Output 8 watts channe (16 wattg). guson oriented grain put transformers
response of 20 to 31 cycles.

- EM84 tuning indic - Valves used 6AN7 12AU7 or 12AX7. 6GW8 and 2 - 0 rectifiers.

245 PARRAMATTA ROAD, HABERFIELD, N.S.W. PHONE 71-2145
me 26 Sydney suburbs. Under the commended to many people who might ton of Max Percy, an experienced not otherwise have known of him, by itrumentalist and conductor, they give his wife's book "A Man Called Peter" excellent account of themselves. So and by the very successful picture made o do the songsters under Russell Belt. fact, the whole presentation rated tter with this reviewer than comparle programs I have heard from major erseas conps.
The track titles: Soldier Rouse Thee, en of Harlech - Torchbearers ivonic Dance No. 8 (Dvorak) rm The Forts - Cleansing For Me Soldiers Of Christ - The Scarlet sey - Let The People Say Amen The Trumpeters - Jesus Died Alone. As noted above, the quality is good, t the recorded level on the disc pears to be somewhat below average. rtunately, the surface noise is low d turning up the volume control to mpensate does not cause any complitions. (W.N.W.)

ERE YOU THERE? Peter Marshall. Great Sermon series. Mono. Word (Gospel Film Ministry) W-3228L.

Interest: Well known preacher, Delivery: Convincing.
Quality: Quite acceptable.
Rev. Peter Marshall, former chap1 to the United States Senate, was
by 20th. Century-Fox, starring Richard Todd. Although it is quite some time now since I saw the picture, I couldn't help but note how my recollection of it fitted the photograph and the voice of the real person.
On this album are two sermons recorded by Peter Marshall during March, 1944, just before his death. "Were You There?" has an Easter theme. "Compromise In Egypt" takes a novel look at the conflict between Moses and the Pharaoh and is developed by Peter Marshall into a condemnation of compromise in Christian living and principles. Both sermons begin with a highly pictorial and seemingly well rehearsed description of the setting, the presentation gradually changing to a forthright proclamation of the message that Marshall is trying to communicate.
There is probably a limit to the number of recorded sermons one would want in a Gospel collection and a limit to the use which could be made of same but these two, delivered by such a famous and capable preacher must warrant special consideration. (W.N.W.)

nstrumental, Vocal © Humour

STRUMENTAL MUSIC OF THE bone has direstly descended; recorders COURTS OF QUEEN ELIZA. or various types, from which the clarinet BETH AND KING JAMES. The New York Pro Musica Instrumental Ensembles. Universal Record Club, stereo U796. Available in mono.
Interest: Sixteenth century music.
Performance: Authentic.
Quality: Excellent.
Stereo: Rather restricted.
The idea of re-creating music of the it-renaissance era with authentic truments of the period has been a our of love of the New York Pro isica for some years, and previous cs in their series of recordings have :n reviewed in these columns on eral occasions. This disc is devoted English music of the period embraced
the second lialf of the sixteenth itury, at which time English comiers were very much in vogue, and re setting the fashions for the Euroin musical world. The program preted here comprises: Five dances ithony Holborne) - In Nomine a 4 h_{n} Ward) - Lord Willobies Welcome me (William Byrd) - Il Lamento tomas Lupo) - Fantasia a 5 (Gioii Coperario alias John Cooper) -- Masque Dances (Anonymous) itasia a 3 (Thomas Lupo) - The d Salisbury His Pavane (Orlando ,bons) -. Five Dances (Anthony Holne).
ipace does not allow any examination the music, but it is worth mentioning stly that it is based on the old church des, the present system of tonality having been established at that iod. This accounts for the rather lesiastical flavour noticeable through-
The main instruments used are the nett. which is a type of folded horn. directly related to the cornet of ay; the shawm, a double-reeded rument, forerunner of the modern je; the sackbut, from which the trom-
was eventually evolved (although no reed is used in the recorder); viols and rebecs, easily recognisable as the ancestors of the stringed instruments of the modern orchestra; and various other minor instruments no longer surviving in any modern form, e.g., the portable organ and symphony.
For those with any interest at all in music of the past, this record will have great appeal, since the Pro Musica are experts in the handling of the instruments they use, probably far better than the musicians of the period. Apart from this, I hesitate to make recommendations since the sounds made by the instruments may fall strangely on ears accustomed to the modern symphony orchestra. I am afraid it is a case of "if in doubt, find out" before buying. (H.A.T.)

ROMANTIC RUSSIA. The London

 Symphony Orchestra and Chorus, conducted by Georg Solti. Decca (E.M.I.) stereo SXLA6263. Available in mono.Interest: Russian classics.
Performance: Excellent.
Quality: Demonstration standard.
Stereo: Wide, smooth spread.
In view of the limitations imposed by lack of musical training facilities in the Russia of the last century, the amount of excellent material produced by Russia's few famous composers of the period is remarkable. It is probable that much of the music which has survived would have sunk into relative obscurity if it had not been for the skill of Rim-sky-Korsakoff as an orchestrator, since composers like Borodin, although able to compose beautiful melodies, were no great shakes at orchestrating their works. Of the five works on this disc, no less than four were orchestrated by Rimsky-Korsakoff. These are: Prelude

You'll deal better with

 H. B. RADIO SALES
JULY SREGALS

PIONEER SA400 amplifier (11w RMS Per channel) and 2 GOOD. MAN'S Twin Axiom 10 Speakers in 3cf cabinet \$208.00. With Star SA30 Amplifier $\$ 197.50$. D.P. SLIMLINE enclosure to suit 10 in and 12 in speakers, $\$ 18.50$ Cabinet Kit only $\ldots \ldots \$ 10.50$ MAGNAVOX or ROLA design slimline cabinet with 8 W.R. (V.C. 15,8 or 3 ohms) or 8 CMX speaker fitted.
. $\$ 26.50$ Cabinet Kit only \$10.50 MAGNAVOX 12 W.R. and 3 T.C. Tweeter with Crossover network in 3 C.F. cabinet; 4 material $\$ 41.00$

GOODMANS design 3 CF Cabinet and Twin-axiom 10 speaker, material
Cabinet Kit and Speaker .. $\$ 44.20$ WHARFEDALE design, 3 CF cabinet (R3) material and Golden 10 spenker .. $\quad . \quad$. $\$ 57.00$ Cabinet Kit and Golden 10 Speaker \$47.00

Special quotes for other Wharfedale or Goodman speakers. Available in Maple, Walnut or Rosewood colours. Teak vencer $\$ 1$ extra for Slimline and Bookshelf models. $\$ 3.00$ extra for others.
PLAYMASTER Bookshelf Speaker System. Complete, $\$ 30$. Cabinet kit only $\$ 7$.
All other parts, including speakers, inner bond, etc., $\$ 15.40$.
MULLARD Mini' BS Unit.
Kit of parts, including Cabinet, made and polished, speakers, innerbond and condenser, $\$ 21.50$. Unit complete, $\$ 25$.
 SPECIAL QUOTES
For Complete Sets Based On LEAK - MAXAMP - PEAK - POLAND STAR - TRIO.

Write for Stereo Catalogue

 H. B. RADIO SALESManufacturers of Quality Radio and Radio Furniture for 36 years

103-105 Catherine Street, LEICHHARDT, SYDNEY

Telephone 56-5580

There's an AIWA microphone to solve your recording problem.

AIWA DM. 57 DYNAMIC MICROPHONE-Impedance: 60 and 50K. Frequency Response: $100-13,000 \mathrm{cps}$. Sensitivity: 75 db 's. Dimensions: $7 \mathbf{4}^{\prime \prime} \times 1 \mathbf{4}^{3 " .}$. Weight: 14 ozs.
$\$ 16.80$
AIWA DM. 17 OMNI-DIRECTIONAL DYNAMIC BOOM MICROPHONE-Impedance: 50 K or 50Ω. Frequency Response: $70-14,000 \mathrm{cps}$. Sensitivity: 75 db 's. Dimensions: $58_{8}^{5 \prime} \times 1{ }^{5}{ }^{5}$ ". Weight: $10 \frac{1}{2}$ ozs. $\$ 16.80$

AIWA UM. 51 DYNAMIC MICROPHONE. Impedance: 50Ω or $50 \mathrm{~K} \Omega$. Frequency Response: $50-15,000 \mathrm{cps}$. Sensitivity: 55 db 's. Dimensions: $10^{\prime \prime} \times 1 \mathrm{~s}^{\prime \prime}$. Weight: 29 ozs.
$\$ 27.00$
AIWA DYNAMIC NON-DIRECTIONAL MICROPHONE DM.13-Impedance: 50 K or 50Ω. Frequency Response: 60 c's-14,000 cps. Sensitivity: 55 db's. Dimensions: Length $10 \frac{1}{2}{ }^{\prime \prime}$. Weight: $18 \frac{1}{2} 0 z \mathrm{~s}$.
$\$ 23.00$
AIWA UNI-DIRECTIONAL DYNAMIC MICROPHONE DM.47-Impedance: 50Ω or 50 K . Frequency Response: 40-18,000 cps. Sensitivity: 75 db 's. Dimensions: $5 \frac{1}{2}{ }^{\prime \prime} x$ $1+\frac{z^{\prime \prime}}{}$. Weight: 18 ozs. with cord.
$\$ 36.00$
AIWA DM. 10 DYNAMIC DESK MICROPHONE-Impedance: $50 \mathrm{~K} \Omega$ or 50Ω. Frequency Response: $60-13 \mathrm{Kc}$'s. Sensitivity: 75 db 's. Dimensions: $7 \mathrm{~A}^{\prime \prime} \times 13^{\prime \prime}$. Weight: 11 ozs. without stand.
\$16.80
AIWA DM. 14 DYNAMIC MICROPHONE-Impedance:
50Ω or 50 K . Frequency Response: 90 c 's-14,000 cps. Sensitivity: 75 db 's. Dimensions: $33^{3 \prime \prime} \times 1 \mathrm{a}^{3 \prime}$. Wt. 10 ozs.
$\$ 12.50$
AIWA DM. 67 CARDIOD DYNAMIC MICROPHONE -
Impedance 50 !? or $50 \mathrm{~K}!2$. Frequency response 100> 12000 CPS with 15 dB . Front to rear separation. Sensi tivity: 74 dB . Dimensions: $5 \frac{k^{\prime \prime}}{} \times 2^{\prime \prime}$ max. Weight: 8 ozs. $\$ 30.00$

Distributed by: GOLDRING
N.S.W.: 443 Kent Street, Sydney. 29.1275 VIC.: 368 Little Bourke Street, Melbourne. 67.1197. QLD.: 235 Edward Street, Brisbane. 2.7010 W.A.: 91 Hay Street, Subiaco, Perth. 8.4988. S.A.: 77 Wright Street, Adelaide. 51.5117.

ENGINEERING (A’ASIA) PTY. LTD.
m "Khovanshchina" (Moussorgsky) ,ht on Bare Mountain (Moussorgsky) Overture to "Prince Igor" (Borodin) Polovtsian Dances (Borodin). The raining work is Overture to "Russlan ILudmilla" by Glinka.
-eaving aside the matter of program itent for the moment, I found it imsible to fault this dise in any way. : playing of the London Symphony hestra under Georg Solti is absolutesplendid; the addition of the choral t to the "Polovtsian Dances" adds a asure of excitement which is often king in the purely orchestral version often played; and technically, the : is first class, with bright, clean nd and no trace of surface noise. I feel a touch of disappointment at t with the lack of enterprise shown the producer in selecting the prom , since these particular works have n recorded so often in the past they in danger of becoming hackneyed. the final analysis, however. I was y glad to have the disc. since these endid performances will certainly nd comparison with any alternative sions available. (H.A.T.)

IERIACHI SPECTACULAR. The Tokyo Cuban Boys. King Records (Festival) stereo SFL-932,214. Available in mono.
Interest: Brass and Mariachi.
Performance: World class.
Ouality: Excellent.
Stereo: Wide spread.
The odd title of this disc is presumably nisprint, for it is surely intended to "Mariachi Spectacular." A glance at tune titles will show why-every one been featured by Herb Alpert: A ;te of Honey-Work Song-Hello lly-South of the Border-A Walk the Black Forest-La Virgen de la carena-Spanish Flea-Lady of Spain Magic Trumpet-Adios-What Now Love-Taboo.
must confess that the appearance of disc on my desk evoked a mental ran. I had just about had my fill of uana Brass imitators-and now this \therefore from Japan. of all places. But, dete these reservations, I thoroughly oyed the playing of the Tokyo Cuban ys in their presentation of these niliar numbers. They produce a bright 1 lively sound. and their instrumental rk and ensemble are in world class. Most earlier reviews of King Records cs have commented on the technical sellence, and this disc is no exception. ose with a liking for Mariachi stvle sic should make a point of asking a demonstration when visiting their ord supplier. I guarantee they will e what they hear. (H.A.T.)

IMOUS OPERA AND CONCERT MARCHES. The Vienna State Symphony Orchestra conducted by Hans Swarowsky. Synchro stereo. Concert Hall SMS 2482.
Interest: As per title.
Performance: Excellent.
Quality: Clean.
At first glance, this might appeat to along the lines of "favourite excerpts mo the classics." but really it isn't. hile the items will be well known to ncert goers, the music itself is likely be less familiar to potential "excerpt" yers than the more usual sort of selecon. Perhaps this is something of a mmendation, particularly as the album
features a definite theme - Famous Marches: March From Fidelio (Beethoven) - March Of The Priests From The Magic Flute (Mozart) - Turkish March From The Ruins Of Athens (Beethoven) - Three Marches For Orchestra K. 408 (Mozart) - War March of the Priests from Athalie (Mendelssohn) - Entry March From The Gypsy Baron (Johann Strauss II) Coronation March From The Prophet (Meyerbeer) - Hungarian March From The Damnation Of Faust (Berlioz) Grand March From Tannhauser (Wagner) - Funeral Music From Gotterdammerung (Wagner).

Side 1 commences in rather modest fashion, with not too much spread, lots of bass from the middle and a suspicion that the compatible stereo-mono recording may have forced a not very inspiring compromise. But early reservations are dispelled as track follows track and the dynamics and spread of the Hungarian March leave nothing to be desired. The album concludes with the eerie but powerful Gotterdammerung.

Yes, well worth a hearing. (W.N.W.)
SPANISH STRINGS. Enoch Light and the Light Brigade. Stereo, Festival Project 3, SPJL-932171. Also available in mono PJL-32171.

Interest: Sound spectacular.

 Performance: Precise. Quality: Some reservations. Stereo: Exceptional separation.It was some years ago that Enoch Light first featured the use of 35 mm magnetic film masters-and released some top-quality sound to emphasise his point. He seems now to be saying the same thing all over , again, but with a new tag: "Project 3." Again-or stillthe mastering would seem to be very good, with expert work at the panels, wide dynamic range, extreme separation where sought and virtually no background noise.

My impression, however, is that Project 3 engineers have been less than discrete in transferring their efforts to disc. The groove looks and sounds to be very heavily modulated and, while some of the sound is very hard and very clean, there are passages which had a definite "edge", with the good-average quality magnetic cartridge which I was using for the review.

Musically, it is a quite typical Enoch Light effert, with any amount of talent from arrangement to execution but all aimed at maximum sonic impact. Some will find it exhilarating, some rather noisy. The titles: April In PortugalWithout You-Come On, Don't Be Timido-What A Difference A Day Made-Perhaps, Perhaps, PerhapsMaria My Own-How InsensitiveSomeone To Light Up.My Life-Lisbon Antigua-I Love, I Live, I Love-Blue Tango-La Mentira.

Best you hear it for yourself. (W.N.W.)
THE GREAT ARRIVAL. Sergio Mendes. Atlantic (Festival) stereo SAL-932,200. Available in mono.
Interest: Latin American jazz.
Performance: Cool, elegant.
Quality: Very good.
Stereo: Normal spread.
The main attraction of this disc is the tasteful and elegant playing of young Brazilian pianist Sergio Mendes. However, to this must be added the excellent arrangements by three well-known musical personalities in U.S.A.-Clare Fisher, Bob Florence and Dick Hazard. Finally, there are the enjoyable tunes included in this selection, many of them by Brazilian composers: The Great Arrival-Monday, Monday-CarnavalCancao do Amanhecer - Here's That Rainy. Day-Boranda-Nana-Bonita-Morning-Don't Go Breaking My Heart -Tristeza de Amar-Girl Talk.
An anonymous group of competent musicians provides a solid framework around which the talented fingers of Senhor Mendes weave a pattern of cool Latin American jazz. This is Senhor Mendes' first disc, and I don't doubt that there will be many more to come. (H.A.T.)

TIJUANA TAXI AND OTHERS. The Living Marimbas. RCA Camden stereo CAS-961. Available in mono. Interest: Latin American.
Performance: Stylish and original. Quality: Very good. Stereo: Well spread.
What a relief it is to get a record of Latin American music which does not use trumpets and Mariachi band. This one seems to be making a determined attempt to get away from the now

ACOS

 REPLACEMENT CRYSTAL CARTRIDGESAcos 90 Saries - a brand new family of four pick-up cartridges, covering all the main types needed to-day. each fitted with Diamond Stylus at no extra cost.
GP91-1 Replaces GP67-1G MONO CRYSTAL
GP91-2 Replaces GP67-2G HIGH OUTPUT MONO CRYSTAL
GP92 MONO CERAMIC
GP93 Replaces GP73-2A STEREO CRYSTAL
GP94-1 Replaces GP81 STEREO CERAMIC
$\$ 5.95$

GP94-5 STEREO CERAMIC FOR TRANSISTOR AMPLIFIERS
\$8.95

fitted with
DIAMOND
Stylus at no extra cost.
technical data sheets sent free on request

NEW SYDNEY ENCEL STEREO

 CENTREA MUSIC LOVER'S MECCA:
Although only just over one year old, the Sydney branch of Encel Electronics is a very healthy infant. Situated on the Ground Floor of the 2SM Building at 257 Clarence Street, the store incorporates a complete Service Centre. Harbor City music lovers are always
welcome

PIONEER SMQ-300B STEREO

AMPLIFIERS

With AM/AM/FW/SW tuners and a frequency response of $20-20,000 \mathrm{~Hz}$. the SMQ-300B offers 20 watts peak power in each channel. Mode blend, scratch and rumble controls are addjtional features. Retail $\$ 270.20$
Brand new in sealed cartons. Encel Bran

SHORT OF SPACE? BUY A
 WHARFEDALE "LINTON"!

Only $19^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$ but a proven performer as a compact speaker system

COMPARE THE QUALITY OF THE NEW "SOUND" SAT-200X

STEREO TUNER/AMPLIFIER

Hore is an effective combination stereo tuner/ amplifier with plenty of power for realistic stereophonic listening, Frequency response from $20-20,000 \mathrm{~Hz}$ plus or minus 1 dB . output is 12 watts R.M.S. per channel (36 watts total milusic power). PP 6GW8's are used in both channels. The stereo AM tuner pulls in distant stations $\cdot \dot{a}$ and an FM stereo Multiplex tuner nay be added. Switches are provided for scratch suppression, loudness control, rumble filter and tape monitor. Stereo 'phones plug into the front panel. All normal mode and tone controls are standard. Beautifully finished, this versatile amplifier has been designed for use with magnetic or ceramic/crystal pick:
ups. Ask for detailed specifications

SEE YOUR NEAREST ENCEL
STEREO CENTRE FOR REDUCED PRICES ON THE FAMOUS LEAK SANDWICH SPEAKER SYSTEM!
The new reduced price applies at all Encel Stereo Centres . . and stocks are also avail able of the new Leak Mini Sandwich. Both systems provide excellent audio, the smaller unit differing only in the lowest octave.
Write for on EMQ or a trade-in valuation.

SPECIAL ENCEL TAPE/DISC STEREO SYSTEM
Here's value for the discriminating purchaser Comprising a Tandberg Series 12 stereo tape recorder (now for immediate delivery at Encel's), Connoisseur Classic turntable on a teak base, the precision Nikka tone arm with a Connoisseur ceramic stereo cartridge (diamond stylus) and two five-speaker Sonics Model AS-61 hand finished enclosures all itens are BRAND NEW and $\$ \mathbf{~ B 7 ~}$
FULLY GUARANTEED. . . price $\$ 4$

NOW ADDITION OF STEREO
 'PHONES COSTS LESS THAN EVER BEFORE!

Here are two popular stereo headsets
both are fitted with foam rubber earpads to reduce external noise and promote listener comfort. The Sonics Model HS-303 has a frequency response of $30-15,000 \mathrm{~Hz}$. and costs only $\$ 11.50$. The Elega Model DR-62C features a separate volume control for each earpiece and is attractively
priced at $\$ 13$. Both are fitted with standard PMG type jacks

BRENELL STEREO RECORDER

 FOR $\$ 382$Model STB 2/5/2 stereo tape recorders usually cost $\$ 764$ complete with amplifiers. 927 This special is in an original carton quickly

CELESTION "STUDIO SERIES"

 LOUDSPEAKERSThe "Celestion" Deluxe Model CX2012 is rated at 20 watts RMS and frequency response is conservatively quoted as $30-18,000 \mathrm{~Hz}$. A special "Brilliance" control operates in the weeter circuit - the electrical cross-over is 511 April '65 and "Hi-Fi News" p.75, June, '65. ENCEL PRICE: 5

Celestion $12^{\prime \prime}$ co-axial loudspeakers have been eceived most enthusiastically by audio enthu siasts and music lovers in Australia. Clarity, ransient performance and attack are particu larly satislying. Both nodels feature co-axial weeters with electrical cross-overs at 4 kHz The Standard Model CXIS12 has a rrequency esponse conservatively quoted at 30-15,000

CX1512

SUPERLATIVE IMPORTED WOOFERS-BOTH $15^{\prime \prime}$ and 18 available now!

Rugged and powerful Celestion woofers are particularly suited to public address, guitar me pass registers in multiple speaker syd for he bass registers in multiple speaker systems n Europe both speakers are very popular ften they are supplied as standard equipment with expensive imported electronic organs and guitar amplifiers.
rew Celestion speaker, this new Celestion unit has been designed for us with organs, guitars and public address sys tems. Feroba II ceramic magnet, total powerful reproducer is Encel \$08. 0 priced at only
OUTSTANDING NEW 18" BASS SPEAKER WITH 20 Hz . BASIC RESONANCE
Use of a new type rubber surround reduces the resonance of the new Celestion G18C to 20 Hz . rotal flux is 285,000 maxwells. powe handling capacity is 100 watts R.M.S. This massive woofer is ideal for the sophisticated audiophile who is seeking the ultimate in bass suitable for electronic organs, electric guitars, etc. Write for $\$ 0.50$ pecificati

If THERE'S A BATTLE OF THE COMPACTS . . . THE CELESTION "DITTON 10" IS WELL TO THE FORE
Many music lovers require compact speaker systems . and tape recording enthusiasts find the addition of external speaker systems makes an astounding difference to perform1ance. Although only 12 " x $6 \frac{2}{2}$ " x $8 \frac{1}{2}$ " the "Ditton 10 " incorporates two units, the bass reproducer being a specislly designed "long throw" model which extends LF response. Power handling capacity is 10 watts R.M.S. Both 3 and 15 ohm impedances are available solid state amplifiers and tape recorders. See the reviews in "Hi-Fi News", p.433. Oct. '65, and the "Gramophone", p.41, June, '65. Write for copies of these enthusiastic reports The "Ditton 10" is beautifully finished in teak or walnut veneers. These compact systems are used by one of Australia's leading universities to re
inforce sound in the auditorium
\$59

TAPE RECORDERS

Although our range of recorders is wide Encel prices have assured a speedy turnove - ask for EMQ's or trade-in valuations

FISHER EQUIPMENT SLASHED The Model X 101 stereo amplifier normally sells for $\$ 296$. This brand new unit is Encel price
Model XP5 Speaker Systems
$\$ 19$.
$\$ 6$
HAMMOND M100 CONDENSER MICROPHONES
Designed for use in recording studios as w as by the recording enthusiast, the supe M100 is available in both mono and ster ersions. Frequency response is 30 Hz . to kHz . plus or minus 1 dB . See the revie in the "Tape Recorder", Feb.,

SPECIAL TONE ARM OFFER! Now we are able to supply new Ortof SMG- 212 tone arms complete with ne Connoisseur ceramic diamond cartridg (diamond stylus) for only $\$ 33.50$. Ortof SPU-GT-E cartridges are available with th
 alone? Encel price

MICRO MAGNETIC CARTRIDGE

OFFER UNEQUALLED VALUE

For only $\$ 19.50$ you can now purchase a quality magnetic cartridge with diamond styl 25000 Hz The Mic M $2000 / 5$ is Encel priced at only $\$ 1650$, is similar electronic design and has a respon: of $20-22,000 \mathrm{~Hz}$. Both feature a 15° vertic tracking angle. Performance is comparab with cartridges twice the Encel price call in to your nearest Encel Stereo Cent and hear just how effective are the modest priced Micro moving magnet cartridges
VF- 3000

M 2000/5
STATE
LOW PRICED SOLID STAT STEREO AMPLIFIER
With 6 watts R.M.S. per channel, the Soun Model SAQ-202B must be regarded as excer tional value at this price. Separate bass an treble controls, input sens. is 100 mV . fc pick-up, tuner and auxiliary. In $20.20,000$ Erequency response is $3 \mathrm{~dB}, 12$ transistors or minus

NOW . . . A HIGH PERFORMANCE STEREO SYSTEM FOR SMALL LOUNGE ROOMS AND MODEST BUDGETS

COMPAX"

Many music lovers have little space to spar Eand require a small stereo system. The ne Encel "Compax" consists of the Soun SAQ-202B solid state stereo amplifier with a I.H.F.M. in each channel, a ${ }^{6}$ watts R.M.S. or 12 wat I.H.F.M. in each channel, a Connoisseu
Classic turntable, the precision Nikka ton Classic turntable, the precision Nikka ton
arm, a Micro ceramic stereo cartridge wit diamond stylus, a teak base for the equip ment and two hand finished multiple-speake bookshelf enclosures. Stereo headphones ma be added for only $\$ 11$ more.
Encel price including sales tax is
only only
A Mk. II "Compax" has just been intro
duced. The "Sound duced. The "Sound SAQ-202B" amplifie and speaker systems are the same; with thi model the turntable supplied is the wel known Labcraft 643, the tone arm has lifting/lowering device, the cartridge is high quality ceramic unit with a diamon stylus and the equipment is housed in a dust-proof base with a perspex This Mk. II 45 'Compax" costs only

NEW POCKET SIZE AUSTRIAN

DICTATING MACHINE

The new Stuzzi Memo-Cord is a compac

 and versatile completely self-contained dictat ing machine which may be used anywher This four track unit incorporates a built-i m:crophone/speaker . . . accessories availabl - lapel microphone. Recording/playing tim 1 hour, size is $4 \frac{1}{2} \times 3 \frac{1}{x}$, weigh ransistorised. Fast push-button 3900 operation. Encel priced at onlyler tired formula mentioned above, bases its melodies on the marimba. se who are not familiar with this rument may care to know that it is y similar in sound to the vibraphone, is rather more mellow, with a deeper e. The result is some sweet-sounding sions of the 10 numbers included in selection (playing time just under 27 iutes).
une titles are: Tijuana Taxi-Pers. Perhaps, Perhaps-Spanish Eyes-

Besos-Spanish Harlem-Mexico do-Made For Each Other-Maria lita - Tijuana Rose - Mu-Cha-Cha. se have been skilfully arranged and tastefully conducted by Leo Addeo; sse own composition "Tijuana Rose" included in this selection-the first e on disc, I believe. The instrumenwork of the band is of the highest er, so all in all, at the low Camden :e, this disc represents excellent value money. (H.A.T.)

MOUS OPERA THEMES. Ray Mar. tin and his Concert Orchestra. CBS stereo SBP 23353. Available in mono.
Interest: Opera evergreens.
Performance: Satisfactory.
Quality: Very good.
Stereo: Normal.
very one of the tunes included in selection has that quality of greats which ensures a place in the affec1 of the music-lover. It is seldom that can listen through a record of this d and enjoy every track-there is usua mixture of good and indifferent, some reason. But whoever made the :ction here knew his stuff, and I feel e these tunes will have almost unisal appeal. Titles are: All Are Caught Love's Fond Snares from "Bartered de" (Smetana) - Oh! My Beloved, ddy from "Gianni Schichi" (Puccini)banera from "Carmen" (Bizet)-Updd the Flames from "Il Trovatore" :rdi)-Lovely Flowers, I Pray from tust" (Gounod)-Lionel's Song from artha" (Flotow)-Drinking Song from I Traviata" (Verdi)-Oh! Star of Eve m "Tannhauser" (Wagner)-Barcarolle m "Tales of Hoffmann" (Offenbach) ermezzo from "Cavalleria Rustia" (Mascagni)-When the Stars were ghtly Shining from "Tosca" (Puccini) joftly Awakes My Heart from "Sam1 and Delilah" (Saint-Saens).
the orchestra plays these in a very isfactory manner. But I did feel that arrangements showed a lack of finesse or example, the marking of each bar
a cymbal in some numbers is uecessary and distracting. Barring this all quibble, I can recommend this ord to those who like the lighter and re tuneful numbers from opera. .A.T.)
:EDS AND PERCUSSION. The Command All Stars. Calendar (Festival) stereo SR66-9,168.
Interest: Enoch Light reissue.
Performance: Faultless.
Quality: Excellent.
Stereo: Good, but gimmicky.
The famous series of Command discs a few years ago, master-minded by och Light, were a highlight in popular ssic recording, combining as they did it-class musicianship, excellent arrange:nts and faultless recording. Those 10 have not yet obtained these for eir record collection now have an portunity to buy them at a bargain
price, since Festival have now begun to reissue them on their Calendar label. This disc is typical of the clever orchestral combinations used in the series-it uses clarinets, saxes, bassoons and percussion. At least, that is what I make of the combination after listening-there is no sleeve note to help. Whatever it is, it is first-class playing, and thoroughly enjoyable.

There are 12 tracks, giving full value for money, instead of the 10 which are now becoming common, particularly in low-priced discs. Tune titles are: She's Funny That Way-_Serenata-I Guess I'll Have to Change My Plan-Pavanne-As Time Goes By-I Want to be HappyBewitched - Badinage - S'posin' -Saxophobia-Thou Swell-Stompin' at the Savoy. The sound quality is well up to par, and it is only the gimmicky stereo which dates the recording-nowadays it is not regarded as clever to switch over from one channel to the other at the beginning of every track. (H.A.T.)

THE DISTINCTIVE PIANO STYLE

 OF FLOYD CRAMER. Floyd Cramer with orchestra. RCA Camden stereo CAS-2104.Interest: Jazz pianist.
Performance: Routine.
Quality: Very good.
Stereo: Good spread.
There is nothing much to get excited about in this run-of-the-mill recording of popular numbers. Floyd Cramer and the supporting band play competently enough, but without much spirit-in fact. without any of those special qualities of artistry or style which lifts a recording above average level. The appeal for potential buyers will therefore be more in the titles than the performers, and if you want these particular tunes, this disc has the advantage of being available at the Camden price-just under $\$ 3$.
Track titles: Tuxedo Junction-Cryin' -The Three Bells-All Night Long-Naomi-Don't Get Around Much Any-more-Tomorrow's Gone-Goin' Home -Kisses and Tears-Hong Kong. Technically, the disc is of a good standard (H.A.T.)

RHYTHMS OF SPAIN. Sabicas with various artistes. Calendar (Festival) stereo SR66-9,151. Available in mono.
Interest: Flamenco.
Performance: First class.
Quality: Very good.
Stereo: Effective spread.
This reccrding of Sabicas playing what may be called modern as well as traditional flamenco is particularly good value, since it is an excellent recording, yet available on the low-price Calendar label. In addition to the great Sabicas himself, acknowledged as one of the leading exponents of flamenco, other flamenco artistes of high calibre participate in this program. Most of the emphasis is on the guitar playing and singing, but there is a very good demonstration of taconeo (heel tapping) in a soleares, by Dolores Vargas. In guitar duets, Juan de la Mata provides excellent support on the second guitar. There is no male cantor, but Antonia Andalucia sings in a pleasant soprano in the tracks which I have suggested could be called "modern flamenco," since it represents a departure from the traditional style.

The program consists of: Viva Mexico (Bulerias)-Fantasia Militar (Sitio de Saragosa)-Rumores de Granada (Gran-
adinas)-Gardenia (Bulerias)-Aires de la Alhambra (Zambra)-Delalosno and Huclva (Fandangos) - Taconeo for Soleares-Son Como las Flores-Azahar Trianero (Sevillanas) - Aromas de Cadiz (Alegrias). This varied program makes very entertaining listening. (H.A.T.)

TYPICALLY IRISH. Brendan O'Dowda. Columbla (E.M.I.) stereo, SCXO 6078. A vailable in mono.

Interest: Irish ballads.

 Performance: "Typically Irish." Quality: Very good.Stereo: Normal spread.
Brendan O'Dowda has been laying claim to the mantle of the late John McCormack with his singing. Now he seems to be making a bid to step into the shoes of Percy French for, of the 16 songs presented here, 11 are of his own composition. These 11 tracks are entitled: "Bedad," Say I-Old BonesThe Pig - Dan - Paddy's Britches Molly Brannigan-Coortin' in the Kit-chen-The Devil and the Woman-The Mac's and the O's-Flannagan's BallTypically Irish. These all sound to be well in line with the humorous Irish ballad, in which the Irish poke fun at themselves (for their own amusement. let me add, not for the enjoyment of "furriners"). It remains to be seen whether they will take their place in the repertoire.

The five remaining tracks are: Mick McGilligan's Ball-Father O'FlynnWhen I Marry Molly Malone-The Charladies' Ball-The Bonny Wee Mare. All except the third item in this list should be known to those with a liking

PUBLIC ADDRESS EQUIPMENT WHOLESALER

ALL LEADING BRANDS

- turner a.w.a. geloso
- SHURE M.S.P. ZEPHYR B.S.R. ACME AMPERNOL
- GRAMPION a.K.G. FOSTER

RESLO R.C.F. AUDIOCRAFT
awIa - toa - pIoneER
Let us place you on our mailing list.

BALGOWLAH, SYDNEY.
Telephone 94.4193.

Thandlluer!g

The popular
 Tandberg "Series 12"

 and the new

 and the new Tandberg Model 6X!

 Tandberg Model 6X!}

The name Tandberg is synonymous with precision engineering, completely natural sound reproduction and advanced tape recording technology. The "Series 12" has already established an enviable reputation as a completely self-contained stereo system; the new Model 6X Stereo Tape Recorder has been developed with the perfectionist in mind. Nothing has been spared to make the 6 X the most effective, efficient and versatile tape recorder available in the world today. Both models proudly carry the Tandberg name.

Australian National Distributors:

Head Office: 28 Elizabeth Street, Melbourne, Vic. Tel. 638101^{*}
Sydney Office: 22 Ridge Street, North Sydney, N.S.W. Tel. 923890
N.T.: Pfitzner's Music House. Smith Street. Darwin. Tel. 3801
rish songs. The other, "When I y Molly Malone" is the work of y O'Donovan, brother of the better'n Frank O'Donovan, who wrote classic "Charladies' Ball," also red in this selection.
I have remarked in previous reof discs by Brendan O'Dowda, I ot place him in the same class as McCormack, but he has a pleasant and an engaging manner-which pose is all that is required for this of performance. (H.A.T.)
DEMY AWARD SONGS 1934.45. Frank Chacksfield and his orchestra. Stereo, World Record Club 5T-4223. Also available in mono. Interest: A dozen of the best. Performance: Smooth, melodic. Quality: Above reproach.
Stereo: Normal.
would be a very poor orchestra could miss out with this group of r-winning songs from the moviesFrank Chacksfield's is far from being or orchestra. On the contrary, I t that I've ever heard the songs nted to better advantage: 1934, The inental-1935 Lullaby Of Broad--1936, The Way You Look Tonight 37, Sweet Leilani-1938, Thanks The Memory-1939, Over The Rain--1940, When You Wish Upon A -1941, The Last Time I Saw Paris 42, White Christmas-1943, You'll r Know-1944. Swinging On A -1945, It Might As Well Be Spring. \rightarrow only is the music tuneful and played, but the quality is absoy first rate, unspoiled by any trace urface noise. In short, one I can tily recommend. (W.N.W.)

MUSIC OF WALT DISNEYFrom Snow White to Mary Poppins, themes taken from the sound tracks. Walt Dtsney memorial LP, proceeds to be shared between the California Institute of the Arts and the Arts Council of Australia. Buena Vista 12 -inch mono, BVS-2000.
Interest: Disney favourites.
Performance: Original sound tracks. Recording: Variable, but O.K.
alt Disney must surely have been of the few real showmen to have ared to date in the movies' short iry. He was certainly the only one nd real success with the animated Despite what one might think of later "ultra-realistic" animated proions, his lavish sentimentality and "rehash" TV programs, there can o doubt that his films brought great yment to literally millions of people ughout the civilised world. And very y they will continue to do so for y years to come.
is being the case, there will probabe considerable interest in this Dismemorial disc, which brings back ronies of many, "f his more popular luctions. There's "Hi Ho", from Snow te, "Little April Shower" from Bam-'Zip-A-Dee-Doo-Dah" from, Song of South, "The Work Song" of the se chorus in Cinderella, and many rs. And, of course, "When You Wish n a Star" from Pinocchio, which almost become the Disney tradek. he recording is a little variable, as might expect, but all things conred it's quite O.K. And one could Hy have performances more authenSo if you would like something with
which to remember Disney and his many creations, this would be a good choice. (J.R.)

FILM ON FLLM-Great Movie Themes, played by Enoch Light and The Light Brigade. Master recorded on $\mathbf{3 5 m m}$ magnetic film. Festival "Project 3" 12 -inch stereo, SPJL 932,208. (Also in mono, on PJL-32,208.)
Interest: Recent movie themes, in "Total Sound."
Performance: Sparkling.
Recording: Excellent.
Stereo: Wide, smooth.
This latest recording of movie themes by Enoch Light and the Light Brigade is recorded in the "Total Sound" of Project 3, which would appear to be the successor to the Command concept. Like the earlier enterprise it involves recording the master on 35 mm magnetic film, and there is no doubt that this can result in an extremely high standard of recording.

As one might expect from this, the present disc is technically excellent. Bass is smooth, treble light and transparent, and the stereo smoothly spread. But whether the music will appeal or not is probably a different matter; it will depend greatly upon the extent to which one likes one's music "Lightened." Personally, I am beginning to find the Lightening process a little like the Mantovani touch, in that every tune seems to come out much the same. Still, it's to a large extent a matter of taste.

The themes are from: The Sand Pebbles-Born, Free-The Alphabet Murders-Who's Afraid of Virginia Woolf?-Alfie-Big Hand for a Little Lady-Hawaii-Is Paris Burning?-The Blue Max-Khartoum-Lady L-How To Steal a Million. (J.R.)
BIRMINGHAM JAIL. Slim Whitman. Camden (RCA) stereo CAS-954. Available on mono.
Interest: Country and western singer. Performance: Pleasing, smooth delivery.
Quality: Good.
Stereo: Reprocessed.
From the seemingly inexhaustible store of country and western material held in its archives, RCA have now released these tracks by popular entertainer Slim Whitman on its economy Camden label. Slim Whitman had a rapid rise to fame in the immediate postwar years, and was for a time regarded as one of the outstanding performers in the country and western field. Little is heard of him nowadays, and he may well still be performing, but the sleeve note does not give any information on this point. From these tracks, it is easy to see why he was a success-he has an engaging personality, and his pleasant voice exhibits none of the straining after high notes which is a common failing of many singers of this type.

With these assets, he delivers the following popular numbers very smoothly: Birmingham Jail-Wabash Waltz_Paint a Rose on the Garden Wall-I'll Do As Much for You Some Day-Let's Go to Church-I'm Casting My Lasso Towards the Sky-There's a Rainbow in Every Teardrop-Tears Can Never Drown the Flame-I'm Crying For You -I'll Never Pass This Way Again.

At the low Camden price, this disc is worth investigating by country and western fans. (H.A.T)

New Additions to the

Range of Top

 Quality CartridgesFeaturing "Hi Trackability"

Model M75E with ellintical stylus. Tracking weight $3 / 4$ to $11 / 2$ grams. Output 5.7 m , v ing weight ${ }^{\text {at }} 1 \mathrm{KC}-5 \mathrm{CM}$. SEC.
Model M75G with .0006' Radius Styli. Output $5.7 \mathrm{~m} \cdot \mathrm{v}$ at $1 \mathrm{KC}-5 \mathrm{CM} \cdot \mathrm{SEC}$.
Tracking weight $3 / 4$ to $11 / 2$ grams.
Model M75-6 with $0006^{\prime \prime}$ radius styli.
Tracking weight, $1 \frac{1}{2}$ to 3 grams.
Output. $5.9 \mathrm{~m} v$ at 1 KC at 5 CM SEC. Specifications common to the above.
Frequency response: 20 to 20 KC .
Channel separation: better than 25 DB at 1000 CPS. Load Impedance 47,000 ohms per channel.
List Prices M75E,
$\$ 69.00$
M75G and M75-6 $\$ 38.00$

Top Ranked

V. 15 smore Type II

The radically new V-15 Type II heralds a new epoch in high performance cartridges and in the measurement of their performance. We call it the era of high Trackability. Because of it, all your records will sound better and, in fact, you will hear some recordings tracked at light forces for the first time without distortion.
SPECIFICATIONS
Trackability at $3 / 4$ gram tracking force using a Shure SME Arm: 17.9 CM SEC at 400 Hz (cps): 26 CM SFC at $1.000 \mathrm{~Hz}(\mathrm{cps}): 26$ CM SEC at 5.000 Hz (cps); $15 \mathrm{CM} / \mathrm{SEC}$ at 10.000 Hz (eps).

Frequency response: 20 to $25,000 \mathrm{~Hz}$ (cps). Output Voltage: 3.5 my per channel at $1,000 \mathrm{~Hz}$ (cps) at 5 CM SEC.
Channel Separation: Over 25 db at 1.000 Hz (cps): Uver 17 db from 500 to $10,000 \mathrm{~Hz}$ (cps).
Channel Balance: Output from each channel Channel Bal
within 2 db .
Stylus: VNISE Bi-Radial Flliptical Stylus, Diamond Tip, 0007 inch (17.8 microns) frontal radius: .0002 inch (5 microns) side contact radii; 0010 inch (25 microns) wide
between record contact points.
Tracking Force: $3 / 4$ to $11 / 2$ grams.
Recommended Load Impedance: 47,000 ohms (per channel).
Mounting: Standard $1 / 2$ inch (12.7 mm) mounting centres.
Suggested retail price $\$ 118.75$ SEND FOR DETAILS
Distributed throughout Australia byAUDIO ENGINEERS PTY. LTD.

342 KENT STREET, SYDNEY. 29-6731.

EKCO - STYLUS RADIOGRAM NEEDLES DIAMOND OR SAPPHIRE

- GREAT NEWSI Our needles DO NOT "break records!"
- EKCO.STYLUS help you to keep them as V.I.P.'sl
- "Built-in" craftsmanship ensures this!
- But you must have your needle checked for wear.
- Use our "NEEDLE CLINIC'.

Ekeo-stylus are available all good music houses

Enquitics:

ERNEST KUENZLI
PTY. LIMITED
60 HUNTER ST., SYDNEY N.S.W. PHONE: 28-6991

SHURE
 15°

M55-M44 Series of Cartridges for the Budgef Minded

Choose from the following:Model M55E with elliptical stylusRadii $.0002^{\prime \prime}-.0007$ ". Tracking weight $\frac{z}{z}$ to $1 \frac{1}{2}$ grams. List price $\$ 49.00$.
Model M44.5
Stylus Radius. . 0005 spherical. Track. ing weight $\frac{1}{4}$ to grams. List price \$28.50.
Model M44-G
Stylus radius-.0007. spherical. Tracking weight. $\frac{3}{3}$ to $1 \frac{1}{2}$ grams. List price $\$ 26.00$.
Model M44-7
Stylus radius .0007 spherical tracking weight $1 \frac{1}{1}$ to 3 grams. List price $\$ 26.00$ Model M44-C
Stylus radius .0007 spherical. Tracking weight. 3 to 5 grams Ideal for changer operation. List price $\$ 24.80$.
Response-All models. 20 to 20,000 Hz .
Compliance-M44-G, M44-5 $=25 \times 10^{6}$ M44-7 $=20 \times 10^{6}$
M44-C $=7 \times 10^{6}$
Distributed throughout Australia by
AUDIO EMOINEERS PTY. LID.
342 KENT STREET, SYDNEY 29-6731

THE SEVEN AGES OF ACKER: Mr Acker Bilk and his Paramount Jazz Band. Columbia, mono 330EX9178.
Interest: British Trad Jazz.
Performance: Very spirited.
Quality: Net very good.
Recorded in 1959 by one of the leading groups to emerge during the great British trad jazz boom, this album, previously issued on the Columbia label, has now been reissued by E.M.I. in the economy price Encore Series. The Bilk band is never dull-always exciting, and this album is no exception, although, technically, the records made in the 60s show a marked improvement.

Two of Acker's hits are included, namely his arrangement of Ketelby's "In a Persian Market" and one of Mr Bilk's many succossful compositions, "Summer Set." There is a very virile rendition of "Tiger Rag," and" John Mortimer roars out on his version of

Kid Ory's trombone feature-' Creole Trombone." The Bilk ban always been partial to old march and this time we have "Berliner March" from the Gay Hussar and Comrades March."

Acker's soaring and always clarinet is the strong part of this and, in addition to two of his inirr vocals, there is one by drummer McKay on "Let the Light Fror Lighthouse Shine on Me." Those heard the band in Australia will forget being amazed at the latter's : ing negroid vacal style. This rel looks forward to hearing some of A recent recordings as, acccrding to reports, the style of the band has completely changed.

COMING ON STRONG-Brenda Festival, stereo SDL-932,166. on mono.
Interest: Popular vocal.
Performance: Robust.
Quality: Good.
Stereo: Normal spread.
Brenda Lee has been going for a now, and listening to this album struck with her versatility. "Upright "You've Got Your Troubles" are belting rock treatment, "Comin Strong" and the lilting "Summer are pop arrangements, while "Call and "What Now My Love" are to lively bosa-nova rhythms. The

Three recordings by Fats Waller

1. FRACTIOUS FINGERING-FATS WALLER. RCA Vintage Seric mono LPV-537.

2. HONEY ON THE KEYS- FATS WALLER AND HIS RHYTHA

 RCA Gold Standard Series, 45E.P. 20394.3. FATS WALLER ORIGINALS. Universal Record Club, mono U-82:

Thomas Waller was born in New York, 1904 and died in Kansas Cit 1943. He composed dozens of numbers, many still famous, suah as "Ain Misbehavin'" and "Honeysuckle Rose"; wrote complete musical revur such as "Keep Snufilin"" and "Hot Chocolates" which were smash hil on Broadway; appeared in many films; played Bach on the Notre Dam Cathedral organ in Paris; and made over 500 records tor KCA wit whom he was under contract until his death.

The first album under review is as good a collection of 16 tracks : you would get from this great pianist-entertainer and, I might add, muc better recorded than many a disc made today. Three of the itracks at piano solos made in 1929, including a previously unissued take c "Gladyse" and that most majestic version of "Sweet Savannah Sue"-bot of them Waller compositions. The other 13 numbers were recorded \mathbf{i} 1936 with the members of the Fats Waller Rhythm-Herman Autreytrumpet, Gene Sedric-clarinet and tenor, Al Casey-guitar, Charls Turner-bass, and Slick Jones-drums-all of whom subsequently becam famous.

Tracks include "Nero," "The Curse of An Aching Heart," "Swingir The Jingle Bells" (a riot) and "Who's Afraid of Love." The whole albur is just bubbling over with humour and happiness in contrast with muc of today's introspective music and, with its 16 tracks, makes for exceller value. This reissue is produced by Mike Lipskin and remastered by Do Miller. The quality is right up to the excellent standard maintained b RCA's Vintage Series.

The second recording is an E.P. comprising "Honey Hush," "Hones suckle Rose," "Whose Honey Are You?", and "There's Honey On Th Moon Tonight,' which are around the same vintage as the L.P., an once again excellently remastered. The thind record, however, suffers b comparison, although Side One gives us a chance to hear Waller's master of the Hammond organ. On Side Two he is at the piano, and all of th 12 tracks include a vocal except the waltz from Gounod's "Faust." Som of the other titles are "Loch Lomond,". "Oh Dem Golden Slippers,' "Hallelujah I'm A Bum." "She'll Be Comin Round The Mountain," ani "Swing Low, Sweet Chariot." Not very exciting matenial to work or and Fats sounds rather lonely all there by himself in the studio.
country and western flavour newhere, and in "You Don't Have To , You Love Me" she sometimes ands like a female Johnny Ray. The , numbers which impressed me most
"Somewhere" and "Kiss Away," ere this singer is more thoughtful and es out, particularly in the former, in e cabaret style. Decca Studios have vided her with excellent studio hestral backing.

VALLARO PLAYS ELLINGTON: Carmen Cavallaro, The Poet of the Plano. Festival, stereo SDL. 932,109. Also available on mono. Interest: Melodic piano solos.
Performance: Excollent.
Quality: Crystal clear.
Stereo: Unnecessary.
low sick and tired one can become of grouping together of tunes by a wellwn composer to be used as a vehicle some jazz musician to de-compose. in the only look-in the composer is on the cover, where his name is to sell the disc. None of this lies to the album under review, where men Cavallaro sits down at a mag. sent piano and extracts all the beauty dynamics from 12 well-known Elton tunes. With his pianistic underding and sensitive technique, Cavalhas delved deeply and intelligently the great compositions of another bist, resulting in a sort of collaborn.
hose of us who, years ago, used to upon Carmen Cavallaro as a sort vatery Liberace received a very great : k when listening to this L.P. Here master of the keyboard-who doesn't ess to be a jazzer-playing with t depth of expression tunes such as rod Indigo," "Satin Doll." "Solitude," -et A Song Go Out Of My Heart,", Nothing Till You Hear From Me," "Sophisticated Lady."

THE MOOD: The Mariachi Brass, featuring Chet Baker. Festival, stereo SFL-932,209. Also on mono. Interest: For Go-Go Dancing. Performance: Competent. Quality: Very Good.
Stereo: Very Effective.
ot so long ago we reviewed this r wilh its album called "A Taste of iila," which consisted mainly of ican melodies. This latest album, The Mood," consists of 12 of the popular numbers made famous by Glen Miller Orchestra, including rise Serenade," "Chattanooga Choo ,," "Little Brown Jug" and "String 'earls." Practically all "of the tunes, ding "In The Mood,", "Tuxedo Junc' and "Kalamazoo,", are given the y off-beat rock ' n ' roll treatment h sounds rather out of date.
m not fond of the arrangements by ge Tipton, and even Chet Baker's aly supple flugelhorn fails to rescue great old tunes from a run-of-thestudio treatment. If these tunes must iven an 'up-to-date' treatment, then sure Herb Alpert's sensitivity would : about a much better result. The ding, however, is excellent, algh Baker's flugelhorn needs more ince in "Pennsylvania 6-5000"

> TRANSISTOR AMPLIFIERS ARE HERE TO STAY. ARROW HAS A LARGE RANGE AVAILABLE NOW. PRIGES RANGING FROM $\$ 70.00$ TO 8600.00 !

> Choose from such well known brand names as SONY, LFAK, PIONEBR, SANSUI, GOODMANS, AKA1, PEAK, FISHER, LTC. Call in now for a demonstration or write for details and prices. There is a model to suit your pocket and toste.

JULY SPECIALS

Peak Model STP-7 Hi-fi player with magnetic cartridge fitted in beautiful case Peak TRM40B transistorised amplifier 11 watts per channel. 2 Wharfedale golden 10RSDD speakers in 2 cubic foot enclosures. Teak. The lot only
$\$ 360$

Pioneer SMT84 transistorised amplifier. Dual 1019 player with the latest Shure M75G cartridge. Teak base and perspex cover to suit. 2 Leak Sandwich loudspeaker unit or if preferred 2 Wharfedale Dovedale speakunits.
A1 value.
$\$ 130$

7 Same player as offer 1 with Peak TRM40B Amplifier and 2 Wharfedale Bronze 8RSDD speakers in 1 cubic foot Teak enclosures. Only $\mathbf{\$ 2 7 8 . 0 0}$. May be had with the Super 8RSDD $\$ 294$
speakers for only.

4

Peak Player unit as per offer 1 and 2 with Leak stereo 30 transistorised amplifier and 2 Wharfedale golden 10RSDD speakers in 2 cubic foot Teak enclosures. Good price $\$ 44$ of only

A SYSTEM FOR THE CONNOISSEUR

Dual 1019 player with Shure M75E cartridge, base and perspex cover to suit - new Sony 1080 transistorised amplifier-choice of either 2 Leak "Sandwich" speaker systems or 2 Wharfedale "Dovedale" speaker units special price of only $\mathbf{\$ 8 7 0}$

ARROW MIRCTIRONCS PIT. VIID. the original home of Hi-Fi

332 Kent Street, Sydney. Telephone 29-3530

FradD Brymins

LUX SQ-101 AMPLIFIER FROM ENCEL

Abstract

The Lux SQ-101 is an all-silicon solid-state stereo amplifier, with excellent physical and electrical characteristics and featuring an tunusual degree of operating flexibility. It was sent to us for review by Encel Electronics Pty. Ltd., of 431 Bridge Rd., Richmond, Victoria.

The amplifier is complete in a substantial metal case with a brown wrinkle finish. The extruded aluminium front panel has a satin finish while knobs are satin and fawn, with all functions clearly marked.

Overall dimensions are 144 inches wide, $5 \frac{1}{4}$ inches high and $9 \frac{1}{2}$ inches deep. The unit gives the impression of robust construction and this is confirmed when the cover is removed, revealing neat design and good workmanship throughout.

The amplifier is of the free-standing type and has been provided with rubber feet for this purpose. Operating facilities are listed in the following paragraphs with appropriate headings and interspersed comment, where appropriate.

Non-technical members of the household could probably confine their attentions to the volume control (top left) and the signal selection switch (top right). The remaining control should meet all likely requirements.

INPUT FACILITIES are provided for: (1) Two magnetic pickups; (2) Input direct from tape-heads; (3) Two auxiliary inputs, suitable for tuner, piezo pickup cartridge or tape after preamplification; (4) Tape monitor. (When recording on a 3 -head deck from the amplifier's recording outlets, the recorded signal can be monitored direct from the deck's replay head); (5) DIN $\mathfrak{7}$ ape recorder socket.

All inputs are controlled by a Function switch which selects the input, and a Mode switch giving the option of stereo, stereo reverse, and left or right channel through both channels simultaneonsly. Concentrically mounted behind the Mode switch is a Stereo Blend control giving continuous variation between stereo and mono, and intended to minimise the "hole in the middle" effect on some stereo records. INPUT SENSITIVITY and EQUALISATION: 3 mV for magnetic pickups (RIAA); Tape ($7 \frac{1}{2} \mathrm{i} \mathrm{ips}$) 1.8 mV into 100 K (NARTB); Tape (3 ips) 2 mV into 100 K (NARTB); Aux. $1,250 \mathrm{mV}$ into 250 K ; Aux. 2, 500 mV into 500 K . On test, all sensitivity figures were "spot-on" or slightly in excess of the specifications, allowing generous output from
typical magnetic pickups, for example with the volume control at less than half on.
OUTPUT FACILITIES: (1) Stereo loudspeaker system with impedance from 4 to 16 ohms trom same pair of terminals (polarity marked); (2) Stereo headphone jack mounted on the front panel twith speaker silencing switch; (3) Tape recording outlets, the level of which is independen of volume and tone controls; (4) Two unswitched AC outlets.
CONTROLS (apart from those already mentioned): Volume and Tone controls concentrically mounted; Friction-loaded, concentrically mounted Bass and Treble controls, all continuously variable; Rocker switches for tape monitor, speaker silen-
of the family may have to be instructec what not to touch!

FREQUENCY RESPONSE: Measure a level of 100 mW into 8 -ohm load's "3dB down" points were at 25 Hz 60 KHz with the tone controls switched of circuit - most commendable figu As could be expected, the square wave sponse at 5 KHz was exceilent, with no t of ringing.
POWER OUTPUT: This is specified 12 watts per channel into 16 -ohm loads 20 watts per channel into 8 -ohm lo These represent RMS ratings at 1 per THD and occur above the "knee-po on the manufacturer's published cur where distortion is rising steeply. Our tests indicated 9 watts RMS per chal into $16-\mathrm{ohm}$ loads at 1 KHz and 12.5 u RMS per channel into 8 -ohm loads. output was obtained with both chan driven to full power, just before visible o of "clipping," and at approximately 0.5 cent THD.
HUM and NOISE: Specifications q 64 dB relative to full output for phono puts. In a practical situation, when usir typical magnetic pickup at normal liste levels, the residual noise could only be h very close up to the speakers.

Finally comes the question: "What di sound like?" Connected to good qu: loudspeakers and a typical magnetic pic it sounded like any amplifier that is be than its associated equioment and we c have no reason to criticise it on this sc The controls are smonth and positive action with no trace of backlash or ni In short, the amplifier is a pleasure to and worthy of a place in any stereo sys

The Lux SQ-101 amplifier is avail from Encel Electronics at $\$ 189$, comt with handbook containing a full ci diagram and a set of typical freque response curves. (L.D.S.).

Oscillator/Modulato

PHILIPS ELECTRICAL PTY. LTD.
introduced a new oscillator/demodul Type PR9309, which they say can consi ably reduce the cost of relative and absc displacement measurements in industry research. The unit operates-in conjunc with a 12 V DC supply unit-as a displ ment to mV converter, and permits the of a cheap and simple moving coil inc tor instead of a more expensive carrier-v measuring bridge normally needed for : applications. Such economies are it marked in applications using several placement transducers, each of which wi require its own measuring bridge.

The Type PR9309 allows static displ ment measurements in combination wit moving coil indicator or strip chart rec er. Dynamic measuring results can be corded on a high speed recorder. Meas ments up to 100 Hz can be made, whil high measuring stability is ensured thro a temnerature-comoensated measuring cuit. The carrier frequency of the uni 3.0 KHz . The adjustabie output is $\pm 1 \mathrm{~V}$, 10 Kohms impedance. Output stability better than 0.05 per cent in 24 hours.

Further information can be obtained f the company's head office at 69-79 Clare Street, Sydney.

REPLACEMENT

PICKUP ARMS

he cheaper type of pickup arm, once so amon on dealers' shelves, seems almost have disappeared. Dealers can supply number of expensive arms, or complete rers but that is all - posing a problem the hobbyist who want to recommission ld turntable for a secondary role around home. It is of interest, therefore, to note Amplion (A'sia) Pty. Ltd. hold quite d stocks of spare pickup arms and are ing to make them available, while they on a mail-order basis, for $\$ 3$ net, uding package, postage and sales-tax, he arms are NOT fitted with cartridges. he four types available are as pictured are listed in order, from top to bottom. i.P. 30 - Originally wired and intended mono cartridges but easily rearranged

stereo. Overall length $91 / 8 \mathrm{in}$; pivot to is position approx. $75 / 8 \mathrm{in}$. Moulded in k, adjustable height, counterweighted ear. Mounting centres for cartridge $\frac{1}{2}$ in, clearance for cartridges $\frac{3}{4}$ in wide.
.P. 10 - Intended for mono cartridges wired for same. Moulded in black, all length $91 / 8 \mathrm{in}$; pivot to stylus dise approx. 73고. Mounting centres for ridge $\frac{1}{2} \mathrm{in}$, with maximum width of l6in. Internal spring to reduce playing ;ht. Movement would need to be freed ise with lightweight cartridges.
P. 50 - A lightweight arm, our sample Ided in brown. Single-hole mounting istal, with internal adjustable tension ag to control playing weight. Overall th $87 / 8$ in; distance from pivot to is position approx. $7 \quad 5 / 8 \mathrm{in}$. Cartridge nting centres $\frac{1}{2}$ in, with room for ridge $\frac{3}{3}$ in wide. Wired for mono but ly adaptable for stereo.
.P. 78 - Another lightweight arm, overength $85 / 8 \mathrm{in}$; distance from pivot to is position approx. $71 / 8 \mathrm{in}$. Sample lded in grey. Single-hole mounting pedewith internal tension spring to relieve ing weight; tension adjustable only by ifying spring. Mounting centres $\frac{1}{2}$ in for :idges up to $\frac{3}{4}$ in wide. Intended and d for stereo.
implion (A'sia) Pty. Ltd., 29 Major's Rd, Concord, N.S.W.).

JW-COST PLANAR TRANSISTORS

AIRCHILD AUSTRALIA PTY. LTD.,
ounces the availability of three new low silicon Planar transistors. The transis, types AY1101, AY1112, and AY1113, all priced at 26 c each for quantities of up.
he AY1101 is a general purpose NPN on Planar transistor which features high er gain, high beta, and low collector ff current. The AY1112 is a high beta I silicon Planar transistor which is ble for high gain, low noise audio amplifier stages and direct coupled ciri. The AY1113 is a silicon NPN Planar sistor designed for use in applications iring very high gain, and is suitable for ium power output driver and low power ut circuits. Inquiries should be adsed to the manufacturers at their head e at 420 Mount Dandenong Road, ydon, Vir

LAFAYETTE

Receivers For Almost Every Purpose

HA. 500 Exeeptional Value
$\$ 199.50$ $100 \mathrm{Kc} / \mathrm{s}$ Crystal (Optional)
$\$ 8.95$

NEW! 6 AMATEUR BANDS $80-6 \mathrm{M}$ 10 TUBES DUAL CONVERSION

- Designed for Optimum Performance on Amateur Bands Only 3.5 to $54 \mathrm{Mc} / \mathrm{s}$.
- 1st I.F. 2.608 Mc/s 2nd IF $455 \mathrm{Kc} / \mathrm{s}$.
- Two $455 \mathrm{Kc} / \mathrm{s}$ Mechanical Filters.
- Product Detector for SSB/CW. Diode Detector For AM.
- Voltage Regulated Power Supply.
- Built-In $100 \mathrm{Kc} / \mathrm{s}$ Cailbrator Circuit.
- "Always-On" Oscillator Filament.

HA-55A
$\$ 109.50$

HA. 700
$\$ 179.50$

NEW! AIRCRAFT RECEIVER HA-55A 108-136 MC/S AM

- Monltors the exciting frequencies of Alr craft Communications.
- Muiti-purpose Tubes Glve 11 -Tube Performance.
- Two RF Stages Including a 6CWA Nu-
- Bullt-in 4 Inch Speaker.
- Variable Squeich Control on Front Panel
- Power Requirements 220/240 V AC .

5-BAND GENERAL COVERAGE

 PLUS AMATEUR RECEIVER150-400 Kc/s. $550-1600 \mathrm{KC} / \mathrm{s}$. $1.6-4.8$

- Ist class performance on AM. CW and
- 6-Tubes pius 7 Seml-Conductors.
- Two Mechanical Fliters for exceptional Selectivity.
- Product Detector for SSB/VW
- Callbrated Electrical Bandspread on
- Edgewise S-Meter.

HA-230
$\$ 159.50$
WIRE THE $\dot{H A}-230$ YOURSELF AND SAVE!
WIRE THE HA- 230 YOURSELF AND SAVE!
Easy-to-follow instructions make wiring a E easure. Semi-Kit complete to last detail

HA-520

4-BAND AM/CW/SSB/ RECEIVER
550Kc to 30 Mc (inc. BC Band) Today's Best Value Recelver Buy Sacked bytLAYAYETTE'S Exclusive Moner Back Guarantee.

- "Always on" Fllament Voltage on Mlaber and Osclilator Glves Superlor 9-Tube Superhet Circuit.
- 9-Tube Superhet Circuit. $\begin{gathered}\text { Stas } \\ \text { Stages for High }\end{gathered}$ - Gulit-in Receptionition for Crowded
- Phone Operation. Electrical Bandspread
- Amateur Bands 80 to 10 metres.
- Stabie Ocsillator and BFO for clear $A M \mathrm{CW}$ and SSB Reception. 30-50 Mc and 152-174 Mc

A de luxe FM Communications Receiver for Office or Home.
10 Tubes plus Sllicon Dlode. - Nuvistor RF Amplifier (152-174 - 3 IF Stages and Fully Tuned RF

- Excellent Sensitivitr of 3 UV for
- Varlable Squelch for Dependabie All Day Monitoring.
- Built-In 4 in Speaker.
- Power Requirements $220 / 240$ V AC.

SEND REMITTANCE WITH ORDER FOR IMMEDIATE DELIVERY ANYWHERE OR WRITE, PHONE OR CALL FOR DETAILED INFORMATION.

> ThFAYETTE
> Division of Electron Tube Distributors Pty. Ltd.
> victorian sales centre and head office, 15A WELIMGTON STREET.
> WINDSOR, S.I. VICTORIA 51.6362

STOCR TRANSFORMERS for Popular Projects!

PUBLICATION

ELEC. AUST. JUNE. 1967 ELECT. AUST. APR. 1967 ELECT. AUST. APR. 1967
ELECT. AUST. APR. 1967 ELECT. AUST. NOV. 1966 ELECT. AUST. OCT. 1966

MINIWATT DIGEST
AUG./SEPT. 1966 OUTLOOK MAY-JUNE 1966 ELECT. AUST. JUNE 1966 ELECT. AUST. JUNE 1966 ELEC. AUST. MAY 1966 ELEC. AUST. MAY 1966 ELEC. AUST. MAY 1966 ELEC. AUST. APRIL 1966 OUTLOOK JULY-AUG. 1965 OUTLOOK JAN.-FEB. 1966 ELEC. AUST. APRIL 1966 ELEC. AUST. APRIL 1966 ELEC. AUST. MARCH 1966

ELEC. AUST. FEB. 1966 ELEC. AUST. FEB. 1966 ELEC, AUST. FEB, 1966 ELEC. AUST. JUNE 1965 ELEC. AUST. DEC. 1965

ELEC. AUST. OCT.-NOV, 1965
ELEC. AUST. SEPT. 1964 ELEC. AUST. AUG. 1964

PROJECT
40 Watt Gultar Amplifier Logic and Counting Demonstrator Optical and Magnetic Preamp for Sound Projectors
All Silicone Playmaster Amplifier Stereo Public Address Amplifier 3 Band Receiver with Switched Coils

Electronic Photo Cell Circuits 3 Watt Transistor Stereo Amp. Regulated Power Supply
Basic Stereo Amplifier
A Battery Charger for your Car 1966 R-C Bridge THREE Band Short Wave Converter Twin 5 Watt Class A Transistor Stereo Amp. -

3 Band Double Change Receiver

 Playmaster 113 Stereo Power Amp.A Four Channel Audio Mixer Playmaster 112 Transistor Control Unit The 1966 Vacuum Tube Voltmeter A Two Band Short Wave Converter A Simple Public Address Amp.

Playmaster Program Source A Powered Monitor for Radio Systems A Practical Photographic Timer
A \& R TRANSFORMER TYPE
PT5892, OT2843
PT2150 or $2 \times$ PT5579
PT1992
PT6232. 23252
PT5891 23239 OT4005 (2 req'd)
PT1992 Suitable Speaker Trans. from A \& R Range.
PT5991
PT5990
PT1940
PT1889, 23040, K5/15 (2 Reg'd.
PT5786
PT2150
PT5890
23200 (2 req'd)
23212
PT5755
PT2150
PT2062 23040 OT E7/15
PT5721
PT TD19 (2 req'd)
PT2150 (for AC Supply)
PT2150 (for AC Supply)
PT5890
PT5890
PT1993
OT E7/15
PT1993
PT5890
PT5890

Available from all leading Stockists!

The famous German LOTRING range of fine soldering tools now made in Australia. Highly finished handle assembly fits any one of 4 high efficiency elements making a lightweight precision
tool. Purchase one basic soldering tool and b adding extra elements expand the irons capabilities Available in 32 V .25 W .50 W .80 W . and 240 V .25 W $50 \mathrm{~W} .80 \mathrm{~W} . \& 120 \mathrm{~W}$. Choice of bits and attachments

Write or call for illustrated leaflet.

LOTRING AGENCIES Manufactured under licence by

ADELAIDE
C. J. HUMPHRIES

248 Gillies Street
MELBOURNE
CORNELIUS \& BALLANTYNE PTY. LTD.
42.44 Little Latrobe Street

BRISBANE

NEIL ROBINSON AGENCIES
838 Oxley Road, Corinda
PERTH
O. F. GAMBLE PTY. LTD.

888 Hay Street

AUTOMOTIVE INDUSTRIES Pty. Ltd Beresford Avenue, Greenacre, N.S.W

KODUIAR DIGIAL DSSRUMEIT SYIEX

Astronics Imports are Ausiralian agents for a new series of modular digital measuring instruments from Dawes Instruments Ltd. of U.K.
he 900 Series is a range of digital mea- literature describing the units available. This ing equipment constructed on modular shows how a simple counter with a count iciples-i.e., all units are based on a rate up to 400 KHz can be built up with a
ge of standard modules. In addition, the em includes a range of standard instrutts. By combination of modules, special pose equipment can be provided at comatively low cost, and almost any mea:ment can be achieved which involves nt , time, rotation speed, or frequency by correct selection of modules. The sysoffers considerable advantages in flexiy, since facilities can be extended at any 0 after purchase of a basic system by ition of component modules. Serivicing lso simplified, since component modules be easily removed and replaced.
ll. instruments in the range can be plied as a single deck version, with conand display facilities arranged side by in a single case suitable for bench or © mounting (19in); or as a double-deck ion in which the display section is urately housed so that the two sections be mounted "piggy back" fashion, for where bench space is limited. With this ngement, the display section can be arated to allow remote display.
he range of instruments currently avail: in the 900 Series comprises digital frency meter counter/timers, ratio meters, Iometers and time/frequency calibrators. ther units are to be added to extend the ge of applications.

Above: Type 983A digital tachometer, slip speed and gear ratio meter, in the double deck configuration.

Left: Type 960A digital timer, as a single deck unit.
he following general data apply to all s in the series:
rystal: $100 \mathrm{KHz} \pm 0.005$ per cent.
isplay: $5 / 8$ high, long-life neon numerical indicator tubes; up to six digits can be accommodated.
ower supply: 95 V to 125 V , or 195 V to 250V RMS.
ontrols: All functions selected by push buttons.
emperature range: 0-45 degrees C.
ase dimensions: Single deck: 17.4×2.9 x 11.4 in . Double-deck: $9.3 \times 4.6 \times$ 11.4 in (remote display $9.3 \times 1.7 \times$ 10.9 in)
brochure containing more detailed data the performance of the individual units railable on request.
1 addition to the complete digital instruts, Dawes Instruments are making availa range of modules identical to those 1 in the 900 series described above. All ; use printed wiring and plug into standsockets. A range of switch units, conors and connector boards is available inter-unit connection. The range comss stabilised power supply, display counclock generators, double decade dividcontrol unit, amplifier shaper, inverting er, binary display units. These can be , for example, to produce equipment sh might form part of a system, be emed in other equipment or used to pro: a single non-standard instrument. es have been kept low by the use of the it Planar transistor techniques and mass luction methods.
xamples of the way these modules can ased to build up systems are given in stabilised power supply and one or more display counters; speed and frequency measurement unit over the range 1 Hz to 1 MHz and speeds above 100 rpm ; time interval measurement unit from 100 s to 100 . million seconds; ratio meter (basically a digital frequency meter or timer or counter without a built-in clock generator); measuring systems for various applications.

Further information, technical hiterature, and details on prices and availability can be obtained by writing to Astronic Imports at 622-626 Nicholson Street, North Fitzroy, N.7, Victoria; or 121 Crown Street, Sydney.

FREEZER AEROSOL

RICHARD FOOT (AUSTRALIA) PTY. LTD. have sent information on Electrolube Freezer, which is a freezer aerosol with a number of applications in electronics work. For example, when a fault such as discontinuity, instability, intermittence or drift occurs in a piece of equipment, this is often the result of temperature rise in some heat sensitive component, particularly those provided as thermal compensators. The Electrolube Freezer aerosol can is provided with a thin tube which allows a fine jet of the freezing reagent to be directed with controlled precision to components in turn, thus allowing the faulty component to be isolated.
Another use for the aerosol is prevention of heat damage to heat sensitive devices such as transistors and diodes. A brief spraying of components with the freezer prior to soldering or desoldering will protect them from the effects of heat for a limited time. Checking and resetting of thermal cut-outs, thermostats and similar devices is simplified by using the aerosol to reduce their temperatures below ambient. The freezing reagent is harmless to polystyrene and other thermoplastics, is non-toxic and non-inflammable. The aerosol also deposits a protective film over components and connections which inhibits the effects of moisture, such as tarnish or corrosion, which might otherwise result from the formation of ice during the freezing process.

Electrolube Freezer is packed in a 602 aerosol can, and the retail price is $\$ 1.75$, aerosol can, and the
including sales-tax.

PrParmpor in Mr

for circuit drawings, printed circuits ${ }_{3}$ engineering drawings,chassis and panel marking:

A comprehensive range of component references is now available on Letratapes. The range is in two letter. sizes $-1 / 8^{\prime \prime}$ and $3.16^{\prime \prime}$. The $18^{\prime \prime}$ size is designed for same- size work; the $316^{\prime \prime}$ size is ideal for $2: 1$ photographic reduction and will provide clear, easy-to-read reference codes even at 3:1 reduction. The range of 61 different tapes in each size contains individual tapes of every letter in the alphabet, and numerals 0-9. Also included are a range of pre-set component references (MR, ebc, PL, SKT etc.), consecutive numeral sequences (1-99, R1-R60 etc.) and commonly used pre-set words.

Hinfle

447 COLLINS ST, MELB. PHONE 621154.

SONY

TC-105

only recorder on the Australian

 market that
features

gives all these for $\$ 199.50$ list

Features Four-track monophonic - 12 hours of recording and playback ■ Reliable all-transistor circuit using Silicon transistors - 3 speeds m Automatic recording volume control "SONY-O-MATIC" . Wide, smooth frequency response and rich output Easy and quick tape loading with "retractamatic" pinch roller and self-threading "SONY-O-MATIC" reel Speaker monitoring and public address facilities Automatic shut-off, instant stop lever with locking facility, digital tape index counter, speaker on/off switch, tone control, voltage selector, professional level meter, etc.

Model TC-105 SONY's new model TC-105 is a versatile four-tre monophonic portable tape recorder with truly dependable : transistor circuit. Designed to meet everyone's purpose a requirements, it also contains professional facilities: 3 speer tone control, digital tape index counter, VU meter, lockal instant-stop lever, speaker on/off switch, voltage selector, 7 -in reel capacity, etc. Its extremely narrow gap head assures prec recording in wide frequency range and reproduction of hi fidelity with rich 4 W . output from a large, oval dynamic speak

SPECIFICATIONS

Power requirement: 100, 110, 117, 125, 220 or 240 V., $50 / 60$ c.p.s. 45 W.
e.p.s. instantaneous selection $1 / 2$,
i.p.s. $19,9.5$ or $4.75 \mathrm{~cm} / \mathrm{s}$.) i.s. ($19,9.5$ or $4.75 \mathrm{~cm} / \mathrm{s}$.

Tracks: 4 tracks, monophonic
Recording Time: 45 minutes per track, 3 hours in total at (With $1800^{\prime} / 550 \mathrm{~m}$. tape) $71 / 2$ i.p.s.
1.5 hours per track, 6 hours in total at ${ }^{3} / 4$ hours.
3 hours per track, 12 hours in total at
Reels: $7^{\prime \prime}(18 \mathrm{~cm})$
Frequency response: $40 \cdot 18,000$ c.p.s. at $71 / 2$ i.p.s.
$40.13,000 \mathrm{c.p.s}$. at $33 / 4$ i.p.s
Less than 0.17% at $71 / 2$ i.p.s.
Less than 0.17% at $71 / 2$ i.p.s.
Less than 0.3% at $33 / 4$ i.p.s.
Less than 0.4% at $17 / 8$ i.p.s.
Record/Playback head: In-line quarter track
Erase head: In-line quarter track
Inputs: Low impedance microphone (1)
High impedance auxiliary input (1)

Outputs: 8 ohm external speaker output (1)
High impedance monitor jack (1)
integrated record/
playback connector:
Speaker: $4 \times 6^{\prime \prime}(10 \times 15 \mathrm{~cm}$.) PM dynamic
Power output: Max. 4 W .
Transistors: 2 SC402 (4), 2SB381 (1), 2SB383 (1), 2SD28 (2)
Diodes: FRIU (1) IT22 (1) 5G.D (2)
Dimensions: $143 / 4(w) \times 71 /$.4 (h.) $\times 133 / 8^{\prime \prime}$ (d.) (37.5 $18.5 \times 34.0 \mathrm{~cm}$.)
Weight: $21 \mathrm{lbs} .(9.5 \mathrm{kgs}$.)
Accessories: SONY dynamic microphone
5" self-threading reel
Pre-recorded $5^{\prime \prime}$ reel demonstration ta
Earphone
Connection cord
Head cleaning ribbon
Splicing tape
Optional accessories: Telephone pick-up, TP-4S Micropho mixer. MX. 600
\qquad

RADE RELEASES-IN BRIEF

NERAL ELECTRIC COMPANY, in .., now has a complete family of gate slled AC switches (Triacs) following : additions to its range. These devices ow available with RMS currents from , 15 A and for voltages from 50 V to
se Triac switches, which will perform of the functions of two SCRs connecn inverse parallel, are designed for 240 V and 277 V 50 Hz or 60 Hz switchnd control applications, such as lamp ing and temperature controlling. An nding feature of their performance is ability to withstand high peak one surge forward currents (IFM). In the of the 6A version, IFM surges of 50A e tolerated. For the 15 A version, the figure is 100 A .
ther details and technical data can be ied from Australian General Electric .td., 103 York Street, Sydney.

INDARD TELEPHONES AND

 JES PTY. LTD. has announced the ntment of Mr Norman C. Stevens as int managing director in charge of the tions of the company's Liverpool Mr Stevens was formerly the general ger of Ducon Condensers Pty. Ltd. uppointment of Mr Stevens has released other assistant managing director, Mr Scott, from his duties at the Liverpool y, and he has returned to the coms head office at Alexandria, Sydney.RIAN PTY. LTD., 38 Oxley Street, 's Nest, N.S.W., has forwarded inforn on a new 6 KW evaporation source red to provide rapid, ultra-pure thinleposition. Virtually all laboratory and iction microelectronics and optical Ig applications can be served by this 2 , the company says. The source is to install in a vacuum system and can ,erated from either on-panel or remote ols. It creates temperatures up to deg. C which can quickly evaporate a range of materials (for example, nium at 3750 angstroms/minute and .1 m at 10,000 angstroms/minute). The e is compatible with a vacuum down
 System.
to 1×10^{-11} torr and can be baked to 250 deg. C. For purity of film deposition, a tightly focused electron beam is magnetically bent so that it strikes the evaporant which is shielded from bombardment by the heated filament.

Another new instrument from Varian is the RF-Plasmapeak sputtering system, introduced by the Varian vacuum division. This is intended for pure, high-vacuum deposition of any material-metal or dielectric. The sputtering module has a water-cooled target consisting of two square plates set at an angle. These are biased with 1.2 KW DC at a radio frequency of 13 MHz . Deposition rates on a horizontal 10 in sq. substrate holder range from 250 angstroms/ minute for dielectrics to 500 angstroms/ minute for metals such as copper. A data sheet is available on request.

FERRIS RROS. PTY. LTD., Channel Master Division, has released the Vu-Tron transistorised battery operated booster and distribution amplifier Model 0024-B. This is a single-unit broadband all-channel amplifier of compact design fitted into a plastic case provided with wall mounting feet or brackets. It is intended as a TV aerial booster on boats, caravans, camps, etc., or as a small distributing amplifier in country homes. The unit is self-contained, and provided with leads for connection to $12 \mathrm{~V}-24 \mathrm{~V}$ and 32 V battery supply. It has an inbuilt
protective diode, and isolation which allows the unit to be used with floating battery supply, or where positive or negative of the system is grounded. An ON/OFF switch is provided for primary battery operation, but where the unit is connected to a secondary battery it may be left connected continuously if required.

Brief technical data are: Designed for either 75 -ohm coaxial cable or 300 -ohm line input, output 300 ohms to one to four TV receivers; covers all Australian TV channels, channel coverage 45 MHz to 222 MHz ; gain, 12 dB minimum, 16 dB maximum; noise figure, 3.5 dB minimum, 4.5 dB maximum.

Retail price is $\$ 35.70$, including sales tax. A full range of accessories is available. Further details can be obtained from the company's head office at 752 Pittwater Road, Brookvale, N.S.W., or branch offices in all States.

HEWLETT-PACKARD AUSTRALIA PTY. LTD. has been formed as the local marketing organisation of the HewlettPackard company, of U.S.A., effective from July 1. The new company will be under the general management of John A. Warmington, with head office at 22-26 Weir Street, Glen Iris, S.E.6, Victoria, telephone 20-1371. A branch office has been established in N.S.W. at 4 Grose Street, Glebe, telephone 69-6338. Under an arrangement with Sample Electronics, the company's former agents in Australia, the new Australian subsidiary will be staffed primarily with the same personnel who have been handling Hewlett-Packard products at Sample Electronics.

Be Paid What You are REALLY WORTH!

Develop your aptitudes at your own pace, for recognition that brings HIGHER PAY. Begin YOUR Progress Today! Select the course you want and which will benefit you most. ICS will send YOU promptly - a FREE illustrated BOOK, giving FULL DETAILS.

YOURS FREE FOR 7 DAYS

The New 'Picture-Book' way of learning

 BAS\|C $\begin{aligned} & \text { ELECTRICITY [5 vols.] } \\ & \text { ELECTRONICS [6 vols.] }\end{aligned}$You'll find it easy to learn with this outstandingly successful new pictorial method-the essential facts are explained in the simplest language, one at a time; and each is illustrated by an accurate, cartoon-type drawing.

The books are based on the latest research into simplifier learning techniques. This has proved that the Pictoria Approach to learning is the quickest and soundest way 0 gaining mastory over theso subjects.

ALSO AVAILABLE IN THE SAME SERIES:-Payment with order only.

FREE TRIAL OFFER DOES NOT APPLY TO THOSE BELOW.

BASIC SYNCHROS and SERVOS BASIC ELECTRONIC CIRCUITS BASIC INDUSTRIAL ELECTRICITY

These three sets are each of two parts and contain be tween 240 and 288 pages, 300 illustrations and are uniforn in size with BASIC ELECTRICITY and BASIC ELEC TRONICS. Each set of two volumes is priced at $\$ 5.91$ plus postage 25 c.

THE PURPOSE OF THE MANUALS is to train technicians, not high grade engineers. They are therefore, admirably suited for self-instruction and for use in Colleges and Technical Institutes; also fo Apprentice Training Schemes in many branches of industry.

These Manuals present a unique simplification of an ordinary complex set of subjects. Their com bination of straightforward text and helpful illustration has led to their adoption as Standard Training Man uals by: The Royal Navy; Many Units and Corps of the Armies of Britain and the Commonwealth; ans Technical Training Command of the Royal Air Force.

Publlshed by the Technical Press, London

TECHNICAL BOOK \& MAGAZINE CO.

295-299 SWANSTON STREET, MELBOURNE
Tel. 323951

NIMEX PTY. LTD., Old Pittwate Brookvale, N.S.W., has released the atch of Australian made pre-recorded Hanimex are also currently the only tlian manufacturer of domestic tape lers.
limex are putting out both twomono and four-track stereo tapes on ch reels. Retail prices are: mono, stereo, $\$ 8.50$. Among the first released selection of titles by Herb Alpert and ijuana Brass. They plan to extend nge to include both popular and light al music, selected from major world gues for which Hanimex have exclusive ecording rights in Australia.
ers may be placed directly with the rex branch in all capital cities exIobart. A list of titles in the first reand branch addresses can be obfrom Hanimex Pty. Ltd., at the is given above.

ERSON AND CUMING, INC., of n, Massachusetts, U.S.A., has supplied nation on the following products:
osorb TE are waveguide terminating ats. The terminations, in the shape sttom-wall wedges, are made from dielectric absorbing material. In use, de of the wedge is mounted in contact the bottom (broad) wall of the wave-

This provides a rugged structure :d to withstand more abuse than the idal type of structure.
ofoam EFF-14 is a one part epoxy sulant with a density of about 14 Is per cubic foot. It is supplied as a or which is vibrated into the cavity filled and then heat treated to effect Cure temperatures as low as 80 deg . C be used where components cannot posed to higher temperatures. Where of cure is important, higher temperamay be used.
obond PDQ is a two part epoxy adthat sets within one minute after mixThe manufacturers state that it is useor joining metal, glass, ceramics and plastics where bonding speed if of count importance. Small quantities are I together and applied immediately to urfaces to be bonded. The mix ratio larts of A to one part of B by weight. tails are available from the company's alian agents, Wm. J. McLellan and Pty. Ltd., The Crescent, Kingsgrove, V .

OMAS BUDDEN PTY. LTD., 59 3 Street, Crow's Nest, N.S.W., advise the Temco adjustable template former. 1 has been in short supply for almost r, is now readily available in Australia. device comprises a pack of sliding red steel needles held in a frame by a it friction device which enables the es to reproduce accurately and simulusly a positive and negative profile of rojection or form to which the needles applied. Each unit allows a profile of oximately 6 in to be taken, but a swivel-

connecting plate supplied with each allows any number of formers to be ed to cope with larger profiles.
re range of applications is said to be tally unlimited, ranging from ship buildto anthropology, architecture to lino

DUCON DIVISION of the Plessey Components Group is stocking a new universal top tuning piston capacitor made in U.S.A. by JFD Electronics Co. These are available in two-wire and pin or four-wire configurations for printed wiring board mounting. The unit illustrated has a range from $2 p F$ to $25 p F$, a working voltage of 500 V DC, a Q of 600 at 20 MHz and insulation resistance of 10^{6} megohms. The tuning torque is 1 to $10 \mathrm{in} / \mathrm{oz}$. Dielectric strength is 1000 V . Details of the full range available can be obtained by writing, on company letterhead, to Ducon Components Division, P.O. Box 2, Villawood, N.S.W.
laying, tool making to jobs around the home and many others. The device was awarded a gold medal at the last International Inventors' Exhibition, in Brussels. It is sold in two packs-in a plastic wallet and in a blister type pack. Suggested retail price is $\$ 4.50$ for the wallet pack and slightly less for the blister pack.

THE PLESSEY CO. LTD, and THE GENERAL ELECTRIC CO. LTD. in U.K. have signed a 15-year agreement in the field of public telephone exchange equipment. The agreement provides for: Collaboration in research and development; pooling of facilities to offer countries throughout the world total communications networks, comprising exchange switching equipment, transmission and other telephone plant; both companies to manufacture and sell the 5005 crossbar system developed by Plessey.
The announcement by the companies says they see this as an important measure of rationalisation in the U.K. telecommunications industry. It is expected to provide the conditions to meet better and sooner the technical and production needs of the British Post Office and overseas markets.

MAGNA ALLOYS AND RESEARCH PTY. LTD., 21 May Street, St. Peters, N.S.W., advise that their Corium Chemical Division has produced an insulating material in liquid form which is applied from an aerosol can to form a tough, flexible, oilproof film. Called Corium 202, the liquid chemical dries within minutes of application. The material when cured is said to have high dielectrical properties which make it a very efficient insulator. Exposed electrical systems can be quickly and economically sprayed with Corium 202 to ensure protective insulation. The product seals out moisture, salt spray, corrosives and undesirable atmospheres. It is said to be ideal for use with diodes, printed circuits, motorhousings, wiring systems, instrumentation and all electrical systems. Dielectric strength is 1000 V per mil.

PLAN YOUR FUTURE

CHOOSE a career in the field of ELECTRONICS* - the Nation's most progressive and fastest expanding industry.
If Advancement in this modern science demands technical ability, a sound knowledge of basic principles and applications.
YOU can master the subject by training at the MARCONI SCHOOL and be ready to grasp the opportunities that occur in the three fundamental branches of Radiotechnology.

Comprehensive training in the maintenance and repair of radio and television receivers offers substantial rewards to competent technicians. Marconi School training covers all aspects of radio and television receiver circuit applications, practical exercises in fault finding and alignment procedures.

$B=$ BROADCASTING

A thorough and practical grounding is available to students in broadcasting transmitter performance standards and maintenance techniques, with individual instruction in station operation and studio control and testing.

C $=$ COMMUNICATIONS

Combines all the foregoing, together with radio aids to navigation, mobile telephony, marine service application and international wireless telegraph regulations, qualifying the successful student for the Commonwealth Government Certificate of Proficiency and the Marconi School Diploma in Radiotechnology.
Classes are conducted at
21 Pier Street, Sydney
(at the foot of Goulburn Street).
Daily: 9.30 a.m. to 4.30 p.m.
Evenings: 6 p.m. to 8.30 p.m. or by Home-Study Courses (except practical instruction on equipment).
 enrolments
close 9th October, 1967. Classes commence 2 days later.
Send for training syllabus.
There is no obligation.
NAME
ADDRESS

the MARCON SCHOOL of wireless

G.P.O. Box 2516, Sydney A Service of Amalgamated Wireless (Australasia) Ltd.

TECHNICAL BOOKS AND PUBLIGATIONS

Fortran IV - "commendable volume"

INTRODUCTION TO FORTRAN IV PROGRAMMING, by Donald Dimitry and Thomas Moth, Jr. Published by Holt, Rinehart and Winston, Inc., New
York, 1966 . Soft covers, $\mathbf{6 i n} \mathbf{x}$ in, York, 1966. Soft covers,
334 pp.. many diagranis. Price in Australia $\$ 6.25$.
Fifty years from now, if mankind has still not succeeded in vaporising itself, the present era will no doubt be regarded as but the pioneering stage of the computer revolution. Our present machines and computing techniques will likely seem rather quaint and clumsy then, even though they now seem quite complex and refined by comparison with previous facilities. Not only this but the present extent of our application of computing will probably be seen as but a scratch upon the surface of ultimate applications.
It is books like that which forms the subject of this review which will contribute greatly to this progress. Not so much by training professional "programmers," I imagine, but by placing programming knowledge and skills in the hands of the people who will really extend the applications of computing-those with the problems to be solved. It is only when the engineer, the scientist and the artist become properly aware of the potential of computers that the computing revolution will be really under way, and one of the requirements for this to occur are that there will need to be many books to disseminate the basic knowledge.
The present volume is intended as an introduction to what is probably the most widely used programming "language" in current use-Fortran (the name standing for FORmula TRANslation). More specifically, it deals with Fortran IV, the most recent version of the language, in the particular "dialect" used with the IBM 7040-7044 computer systems. However the discussion is sufficiently general to be of considerable value to anyone wishing to develop a basic understanding of other Fortran versions or dialects as appropriate to other machines.
The book is designed to be self-sufficient for the student with no previous detailed knowledge of computers or programming and, to this end, the first three chapters explain in some detail the basic concepts involved in both the digital computer itself and its direction. The first chapter discusses the basic elements and operation of a digital computer; the second discusses number systems and coding; while the third explains the three "levels", of programming languages-machine, symbolic, and machineindependent or "problem orientated," into which latter category falls Fortran.
The remainder of the book then deals with the Fortran language in detail, discussing in turn arithmetic statements, types of variable and constants, functions, transfer and program control, input/output, subscripted yariables and DO loops, subroutines, equivalencing and COMMON statements. advanced input/output, logical operations, double precision and complex arithmetic. Finally there are some 25 sample programs and problems, all of which have been tested with a computer to ensure their correctness, and a selected bibliography.
Throughout the text seems very well written. The explanation is clear and con-
cise, and well illustrated with examples. Important definitions and statements are isolated with rules for easy reference at a later date, and every chapter ends with a short set of practice problems.
In short, a highly commendable volume from all aspects, and one which would make an excellent introduction to the Forran language. It will probably be of value to almost every progressive scientist and engineer.
Our copy came from the Australian and New Zealand distributors for the publisher. Rigby Limited. We understand that copies will be available from the larger bookstores by the time this review is published. (J.R.)

Examples - physics

worked examples in modern PHYSICS, by P. Rogers, M.Sc., and G A. Stephens, Ph.D. Vols. 1 and 2. Published by lliffe Books Ltd., London, 1967. Soft covers, $5 \frac{1}{2}$ in $\times 8$ in. Vod ume 1: 126 pp., 12 diagrams. Volume 2: $100 \mathrm{pp},$.20 diagrams. Price in U.K. 18/6 each volume.
These volumes are intended primarily for undergraduates in Science and Engineering courses. They contain a selection of actual examination questions from several English universities and colleges and, since English standards are probably broadly similar to those in this country, the examples may accordingly be useful to Australian students in the later years of their courses.

The contents are as listed below:
Volume 1:
ATOMIC and ELECTRON PHYSICS:
Mass spectrometers, motion of charged particle in electric and magnetic fields, charge on an electron, photo-electric effect, the Bohr atom, Zeeman effect, etc.

NUCLEAR PHYSICS: Radioactivity, equivalence of mass and energy, nuclear reactions, nuclear reactors, nuclear instruments, etc.

Volume 2:
X-RAYS and ELECTRON PHYSICS: Origin of X-rays, adsorption of X-rays, Bragg's Law, missing orders, etc.

SOLID STATE PHYSICS: Lattice energy of ionic crystals, magnetic properties of materials, point defects, free electron and zone theories, free charge carriers in metals and semiconductors, etc.
WAVE MECHANICS: Dualism, Heisenberg uncertainty principle, Schrodinger Equation, etc.

SPECIAL THEORY of RELATIVITY: Michelson-Morley experiment; the Lorentz transformation.

The books assume that the reader has full knowledge of the topics, and are only concerned with giving a straightforward method for solving the problem in hand. After giving the method for a particular type of problem, further unworked examples with answers are given for exercise. All in all, this book would be very handy to students doing this subject.

Our copy came direct from the London publishers but it is likely that copies will be available from local technical bookstores in available from local tech
the near future. (L.D.S.)

Amplifier Fundament

FUNDAMENTALS OF VACUUM-T AMPLIFIERS. Published in U.S. . Techpress Inc., Brownsburg, Ind Stiff paper covers, fin x yin, 301 Price in Australia, \$4.75, postage
This book is a condensation of one series of U.S. Navy training manuals c ing "Fundamentals of Electronics." Tr not divided into numbered chapters, nevertheless fairly complete in itself study of audio amplifiers, with only pi references to RF amplifiers.

Though the publishers describe "basic" and "down to earth," it is much a book for students, not for begil Throughout, the text is heavily depe on graphs and mathematical expres Again, " j " appears without introducti an elementary treatment of impe coupling and, later, when equivalent ci are discussed in some detail, col numbers are used as a matter of c

The first section on triode amp includes a very thorough introductic valve theory. Topics covered include current control, characteristic curves. load line and load line analysis, class operation, biasing methods, coupling, meters and equivalent circuits. A largt of this section deals with amplifier quency response including response (and deals at some length with equi circuits at midband, low-frequency high-frequency using complex no throughout.
The second section deals with tt and pentode amplifiers, with a thorough analysis of gain and freq response of the latter. The third si deals with paraphase amplifier circui phase splitters as they are more comı called.

Section four is devoted to the power amplifier and although desc both single-ended and push-pull ci adequately, much of this section is in with a descridtion of beam power v The final section covers decibels, r phones (including the nature of sound the dynamic speaker.

A number of questions are includ the end of each section, but witl answers given. Other questions are sca indiscriminately throughout the text, short answers appearing a few pages often in mid-sentence, thereby disrt the smooth reading of the main tex
Review copies were received direct Technress; also from the Technical and Magazine Co. Pty. Ltd., of 28 Swanston Street, Melbourne, C.1, Vic who have copies available from stock.

Amplitude modulatic

PRINCIPLES OF AMPLITUDE MC LATION. Published in U.S.A. by press, Inc., Brownsburg, Indiana. paper covers. in x 9 in, 80 pp . Pr Australia, $\$ 2.35$, postage 15 c .
This rather modest book been compiled for High-school cated students and is, in endorsed "Not An Engineering Text covers the fundamentals of amplitude n lation on a straightforward manner very little mathematics. Most of the bo purely descriptive, as would be expect an introductory text of this nature. It s l be noted, however, that only AM tran sion is discussed, the problems of dete being left out of this treatise.

Some idea of the contents can be de from the section headings: Amp Modulation; Plate-Modulator Ana AM-Wave Analysis; Vector Analysis; tional Modulation Systems. The boc quite comprehensive, but it does empl plate modulation in preference to methods, which are relegated to the section. The second section describes to derive a transfer curve and explain
ion of the plate modulator. The third 1 includes an analysis of the power carrier and sidebands, while the final 1 includes a brief description of how ck the percentage of modulation.
book includes a selection of questions end of the book as exercises, but 10 answers. It also has a selection of ms in the text of the book with the s appearing rather disconcertingly 1 pages later. This tends to disrupt the uity and therefore does not assist
nded primarily for the yast number itizen Band" operators in the U.S., rok should be of some value to Aushobbyists, amateurs and others who to learn the fundamentals of amplirodulation and how modulators work. iew copies were received direct from ress; also from the Technical Book Lagazine Co. Pty. Ltd., 289-299 Swantreet, Melbourne, C.1, who have copies sle from stock. (J.H.)

ments of $\mathrm{Hi}-\mathrm{Fi}$

TROUBLES . . . How You Can void Them . . . How You Can Cure hem. By Herman Burstein. Number :0 of the Gernsback Library series, ew York. Stiff paper cover, 159 pages, f $x 5 \frac{1}{2}$ inches, freely illustrated with ne drawings.
an author on hi-fi topics, Herman in will be well known to readers of can technical journals and, in fact, of the material in this book has been id from articles by the author which already appeared in "Audio," "HiFi Review" and "Radio Electronics."
book has been compiled primarily i i-fi enthusiasts to whom the various components in a hi-fi system are "black boxes." The author makes no t to explain the intricacies of circuit or, for that matter, of component In this respect, the title could be ding to those who might look upon ook as a tutor for repairing faulty iers, etc.
author's objective rather, is to exthe characteristics and roles of the components in a hi-fi system, the ds and problems of interconnecting istalling them as a system, and to edu-i-fi enthusiasts into all aspects of their is, short of actually diving into the Is. There is certainly plenty of scope, up to this limiting point, and the r appears to have provided an exceloverage. One thing is certain, if local iasts were to absorb the contents s book, there would be fewer inquiries how to connect which to what, and loesn't it work?
jects covered in a total of 11 chapters e, audio troubles, tools of trade, elery troubleshooting; problems to do hum, noise, bass, treble, distortion, . A final chapter has to do with buildrself kits.
short, a most useful book for the uned. Our copy came from the GrenPublishing Company, 154 Clarence St, y. Copies are available from technical hops; Aust. price $\$ 4.95$. (W.N.W.)

ırier Transform

FOURIER TRANSFORM AND ITS APPLICATIONS, by Ron Bracewell. 'ublished by McGraw-Hill Book Co., nc., New York, 1965. Hard covers, $\frac{1}{4}$ in $\times 9 \frac{1}{4}$ in, $381 \mathrm{pp} \times$, many diagrams. rice in Australia \$12.35.
recent addition to McGraw-Hill's established and highly esteemed Elecand Electronic Engineering Series is olume on the Fourier transform, writ,y Professor Bracewell of Standford :rsity's school of Electrical EngineerThe author states in his preface that look is a culmination of an interest e subject which first started in 1939 he was a student at the University of :y
book is aimed at those already posg a first degree, with the idea of

FREQUENCY RANGE: 540-1,605 Kcs.; 1.6-4.8 Mcs.; 4.8-14.5 Mcs.; 10.5-30 Mcs.; 142-148 Mcs.
BANDSPREAD (Direct reading calibration on Ham Bands): 3.5 Mcs.-3.5-4.0 Mcs.; 7 Mcs.-7.0-7.35 Mcs.; 14 Mcs.-14.0-14.4 Mcs.; 21 Mcs.-21.0-21.5 Mcs.; 28 Mcs.-28.0-30 Mcs.
(Markings every 5 Kc . on 80 and 40 metre bands.)
SENSITIVITY: 2.0 microvolts for $10 \mathrm{db} \mathrm{S} / \mathrm{N}$ ratio.
SELECTIVITY: Without Q Multiplier: over 65 db at $10 \mathrm{Kcs.;}$ With φ Multiplier: Variable from -74 db to -95 db at ± 10 Kcs.
OPERATION: AM, SSB, CW and FM.
OUTPUT: 1.5 watts.
POWER SOURCE: 220 volt, 50 to 60 cps . AC.
TUBES: 6AQ8 VHF Amplifier; 6AU6 VHF Mixer; 6AQ8 VHF Oscillator; 6BA6 RF Amplifier; 6BE6 Mixer; 6AQ8 Local Oscillator; 6BA6 (2) IF Amplifiers; 6AL5 AM Detector, Automatic Noise Limiter; 6BEG 6AQ8 Local Oscillator: 6BA6 (2) IF Amplifiers; 6AL5 AM Detector, Automatic Noise Limiter; 6BE6
Product Detector, Gated Beam Detector; 6AQ8 Audio Amplifier BFO; 6AQ5 Audio Output; 6AQ8 Product Detector, Gated Beam Detector; 6AQ8 Audio Amplifier BFO; 6AQ5 Audio Output; 6AQ8
Q Multiplier Marker Oscillator; 6CA4 Rectifier OA2/VR-I50MT-Voltage Regulator Tube; IN60-Diode. AUXILIARY CIRCUITS: Band Spread Tuning 9 Multiplier for Variable Selectivity; ANL (Automatic Noise Limiter); AVC-MVC (Automatic and Manual Volume Control); Product Detector (for SSB-CW); Gated Beam Detector (for FM); Marker Oscillator; S-Meter; BFO; Tape Recording Terminals; Phone Jack Socket.

MODEL 9R-59DE

COMMUNICATIONS \& AMATEUR RECEIVER

(WITH MECHANICAL FILTERS)

SPECIFICATIONS:
FREQUENCY RANGE: Band A-550-1,600 Kcs.; Band B-1.6-4.8 Mcs.; Band C-4.8-14.5 Mcs.; Band D-10.5-30 Mcs.
BANDSPREAD: Calibrated Electrical Bandspread. 80 and 40 metres- 5 Kcs. per division. 20 and 15 metres- 20 Kcs. per division. 10 metres- 50 Kcs . per division.
ANTENNA INPUT: $50-400$ ohms impedance.
AUDIO POWER OUTPUT: 1.5 watts.
SENSITIVITY: 2 uV for 10 dB S/N Ratio (at 10 Mcs .).
SELECTIVITY: $\pm 5 \mathrm{Kcs}$. at -60 dB ($\pm 1.3 \mathrm{Kcs}$. at -6 dB). When using the Mechanical Filter.
BFO FREQUENCY: $455 \mathrm{Kcs} . \pm 2.5 \mathrm{Kcs}$.
SPEAKER OUTPUT: 4 or 8 ohms.
HEADPHONE OUTPUT: Low impedance.
TUBE COMPLEMENT: VI-6BA6 RF Amplifier: V2-6BE6 Mixer; V3-6AQ8 HF Oscillator: V4-6BA6 Ist IF Amplifier; V5-6BA6 2nd IF Amplifier; V6-6BE6 Product Detector; V7a-6AQ8 Beat Ist IF Amplifier; ${ }^{\text {Frequency Oscillator; V7b-6AQ8 Ist AF Amplifier; V8-6AQ5 Audio Output; IN60-AF Detector; }}$ Frequency Oscillator;
IN60, SW-05s-AVC; SW-05s-ANL; SW-05s x 2-Rectifiers.

CONSULT YOUR LOCAL RADIO DEALER, OR
 MAIL THIS COUPON

 Please forward free illustrated literature and

 specifications on Trio equipment.Name.
Address..

Electronics Tecthiniciuns (4)

ENJOY HIGHER PAY AND MORE SECURITY

Put yourself in this picture! With training through T.T.I., you could qualify for a start in the Electronics Industry as a:

- Radio-television technician - Telecommunications technician - Instrumentation technician - Business machine technician - Automatic control technician - Industrial electronic technician-and many other skilled positions.

WILL YOU FILL THE BILL WHEN THE TIME COMES?

The "good job" you hold down today may offer you less and less opportunity for advancement as Electronics increase their impact in all branches of industry.
TECHNICAL TRAINING INTERNATIONAL, a world-wide company with over 27 years' experience in the field of specialised technical training, now offers the latest Electronics training programmes available in Australia.

THIS IS A PRACTICAL PROGRAMME

You receive-and keep, the practical tools to complete your training-from tool kit to oscilloscope.

IF YOU ARE BETWEEN 18 AND 45 YEARS, AND EARN. ING LESS THAN \$80 PER WEEK . . . IF YOU ARE SERIOUSLY INTERESTED IN TRAINING FOR A CAREER IN ELECTRONICS, FILL IN THIS COUPON FOR FURTHER INFORMATION WITH. OUT OBLIGATION.

To: Technical Training International Pty. Ltd.
P.O. Box 83, Double Bay, N.S.W. Please tell me more about T.T.I. Electronics Training, without obligation to me.

Name

Address.
Age.
Present occupation.
T.T.I.-The Industry-approved Technical Training Organisation
\qquad
providing them with a sounder and basic grasp of the Fourier transforr its applications than is normally ac "along the way" in post-graduate stud approach is an honestly practical one cerned with the application of Fourier forms to physical situations rather with furthering the mathematical : for its own sake.

The original idea was to produce torial guide or "atlas" to Fourier forms, with diagrams of the appr functions and transforms to comp the standard pair lists. However, the found that as the work progresse major weight of the content, and the itself had grown to full-scale text.

Although this might lead one to that the book would be unwieldy and ing, such is not the case; or at 1 seems so to this reviewer. In fact it to be extremely well written, with a mendable balance between mather conciseness and the detailed disc necessary to fully explain the conce volved. So successful is this balanc the book seems eminently suitable f purpose intended.

The chapter headings give a goo of the scope covered: 1-Introductio Groundwork; 3-Convolution; 4-N for some useful functions; 5-The i symbol; 6-The basic theorems; 7transforms; 8-The two domains; 9trical waveforms, spectra, and filters Sampling and series; 11-The Laplace form; 12-Relatives of the Fourier form; 13-Antennas; 14-Television formation; 15-Convolution in sta 16-Noise waveforms; 17-Heat conc and diffusion; 18-Pictorial Diction: Fourier transforms; 19-Appendix.

Each chapter ends with a set of pro and chapter 2 includes a bibliography.

To summarise, an excellent text Fourier transform and its applicatio the engineer and graduate student.

Our copy came from the publishe we understand that copies are availa all comprehensive booksellers. (J.R.)

Electron Physics

PHYSICAL ELECTRONICS. I Paperback No4 5, by B. Urgosik lished by Illiffe Books Ltd., LA Stiff paper covens, 189 pages, sid 5t inches; numerous diagrams.
The average electronics engineer do greatly concern himself with the fin tails of sub-atomic particles. He as their existence, their electrical charg certain behaviour patterns in vacuun liquid and solid-but only to a degree sary to an understanding of electronic ponents and circuits.

The emphasis of this book is all the way. The author introduces electron cepts, electron behaviour in metals, el emission, electron tubes, etc., in mus same manner as one would expect to any one of a large number of elect textbooks; but instead of using this starting point to orientate the fact or in respect to external circuitry, he ti long, introspective look at the laws an tors which cause the electron to beh: they do.

The publisher's own notes descrit book quite accurately: It begins by sing methods of producing free electro ions and then devotes a chapter to tron ballistics" in which the moti charged particles is considered. Succ chapters deal with the electron as a p and a wave, with primary and secc emission of electrons and the behavic electrons in metals and gasses. Elec optics are considered in some detai chapters are devoted to electron tube mass spectrometers. All the more imp aspects of the subject are considered the exception of plasma, which is the ject of a separate paperback: "Fourth Of Matter."
(This last-mentioned title was review I. L. Pogson in our June issue, page and commended for its compreh coverage of the subject.)
shed in the first instance, in Prague t, this present English translation the dateline 1966. It is not a pretenrok and at 17/6 in England is not ensive one; but it is packed with tion, freely illustrated with explanaigrams and should be most valuable leers and engineering students whose r studies dictate that they should re than the usual amount of attenwhat goes on inside thermionic and te devices, from diodes through to spes, magnetrons, klystrons and ectrometers.
:opy came direct from the publishers reasonable to assume that supplies available through technical bookPrice in Australia has not been (W.N.W.)

rents of SCR's

OF SILICON CONTROLLED REC-
FIERS, by Allan Lytel. Originally slished in U.S.A. by Foulsham-Sams :hnical Books. This edition publishin U.K. by W. Foulsham and Co. l., Slough, Bucks, with an introduca for the English reader by W. iver. Hard covers, $5 \frac{1}{2}$ in $x \quad 8 \frac{3}{4} \mathrm{in}$, 3pp. Price in Australia, \$2.72.
is a simple introduction to the controlled rectifier, or thyristor. The jvers the following topics in varying s of detail: Basic principles, includ-ai-conductor theory, how the SCR and using the SCR; SCR characteracluding how to read specifications, rn-on and turn-off methods; Static Ig, AC and DC; Phase control, inmagnetic triggers and unijunction ors; Motor control; Applications of R, including lighting control, and iture control; Related switching including the four-layer diode and t -activated SCR.
the technician, hobbyist, or student familiar with transistors, this book rm a useful introduction to SCR's, s selection of possible applications ,eriments.
N errors have crept in which should ly obvious to all but the absolute ar. One in particular is due to overcation in the introducory section ng semi-conductor theory. Here the states: "A diode is formed by presssether two pieces of semi-conductor 1 , one p-type and one n-type."
review copy came from Grenville ing Co., 154 Clarence Street, Sydney, should be available from technical ops. (J.H.)

imes on Antennas

NNA HANDBOOK by Glanzer, lume 1: Theory and Practice. Pubued by Cowan Publishing Corp., 14 inderventer Ave., Port Washington, Y. Soft covers, $8 \frac{3}{4} \mathrm{in} \times 5 \frac{3}{2} \mathrm{in}, 109 \mathrm{pp}$., my diagrams. Australian retail price .95 , postage 15 c .
little book is the first of a set of olumes. Although we have not seen ler two volumes, it is expected that ill be available shortly. Information le indicates that this work thas taken years of research and preparation lat the approach to the subject is id not just a re-hash of old material. eful perusal of Volume 1 seems to e that the method of attacking the matter is different from the usual clear and well presented.
first chapter is devoted to trans1 lines and the subject is treated at erable length. This is a subject that is all easy to get across to the reader is treatment is so well illustrated that hould be no difficulty in grasping this "antenna theory.
"characteristic impedance," or Zo, is mes found difficult to grasp by some ts. Also, the reason why the standing ratio differs when measured at the itter end, from that measured at the end of the transmission line, is given reatment. In short, the author has a
thorough grasp of the subject and he is also able to impart it to others.
Chapter two is devoted to antenna fundamentals. This begins with the theory of radiation and the concept of electric and magnetic fields at right angles to each other. This is followed by a short discussion on radiation resistance. Then follows the halfwave dipole and aerials progressively longer than one half wavelength. Third dimensional radiation patterns are given and these give a clear picture of the actual pattern, which is so otten lacking when this material is being covered.

The third chapter deals with matching devices. Such methods as the Gamma match, T-match, Delta match, Folded Dipole matching and Quarter-wave stub matching, are included. These are followed by the use of baluns and methods of feeding multiple antennas and stacked beams.

To sum up, I think that this work is well worth looking into and on the assumption that the other two volumes are as good, there should be a wealth of information to draw upon, for the reader who has a real interest in antennas. One point however, may stand in the way of some would-be buyers and that is the price. However, this is a matter for the individual to decide.

Our review copy came from the Technical Book and Magazine Company Pty. Ltd., 289-299 Swanston Street, Melbourne C.1, and we understand that copies are now available from stock. (I.L.P.)

LITERATURE-in brief

STANDARDS ASSOCIATION OF AUSTRALIA has issued Australian standard AS K158, covering the quality of electroplated coatings of gold in engineering applications. The standard provides for 12 coatings, ranging in thickness from 0.5 microns to 125 microns. It recognises four types of coating, according to gold content, and specifies hardness, adhesion, porosity and corrosion restance. Tests for proving compliance with the specified requirements are described, including a method of assessing the composition of the coating. Copies of the standard are available from the various offices of the association for 80 c each, post free.

ADVANCED MICROWAVE TUBES FOR ADVANCED SYSTEMS is the title of a new four-page shortform catalogue produced in U.S.A. by Varian Associates. It lists the complete lines of CEM and ICEM coaxial magnetrons, $C W$ and pulsed crossed-field amplifiers, and high-power noise generators available from S-F-D Laboratories, a subsidiary of Varian Associates. Inquiries should be addressed to the Australian company, Varian Pty. Ltd., 38 Oxley Street, Crow's Nest, Sydney.

ANODEON SALES DIVISION has published a data sheet covering Anocap polyester film capacitors, now being manufactured by a new division of Electronics Industries Ltd. This lists the full capacitance and voltage ranges at present available, explains how to interpret the numbering code, contains typical performance curves and general information on construction and operating conditions. The sheet is obtainable from Anodeon Sales Division offices at Electronic City, 443 Concord Road, Rhodes, N.S.W.; or Electronics Park, Hamilton Street, Huntingdale, Victoria.

FOULSHAM SAMS TECHNICAL BOOKS

BASIC ELECTRICITY/ ELECTRONICS

PROGRAMMED LEARNING

1. BASIC PRINCIPLES \& APPLICATIONS
2. HOW AC \& DC CIRCUITS WORK
$\$ 5.95$
3. UNDERSTANDING TUBE \& TRANSISTOR CIRCUITS
$\$ 5.95$
4. UNDERSTANDING \&

USING TEST INSTRU-
MENTS $\cdots \quad \therefore \quad$ GENERA
5. MOTORS \& GENERA-
TORS - HOW THEY WORK
$\$ 5.95$
6. LABORATORY WORK- $\$ \mathbf{~ B O O K ~} \quad$.

EILECTROXIC ${ }^{\text {BOOK }}$ MOTOR
CONTROL, by Allen Lytel $\$ 5.95$ ELECTRONIC SERVIC-
ING FOR THE BEGINNER
By J. A. Stanley
$\$ 4.05$
ELECTRONIC SYSTEMS
FOR CONVENIENCE,
SAFETY \& ENJOYMENT,
A. Altshuler ${ }^{\text {ELECTRONIC }}$ TEST $\dot{\text { IN }}$.
$\$ 5.10$
STRUMENT HAND.
BOOK, by J. A. Risse
KNOW
YOUR TEST
METERS, by J. A. Risse $\$ \mathbf{3 . 6 0}$
DIGITAL COMPUTERS-
MATHEMATICS AND
CIRCUITRY, by Technical
Education \& Management
Inc.
$\$ 5.10$
BASIC ELECTRONICS SERIES
By Thomas M. Adams

1. TRANSISTOR CIRCUITS $\$ 4.05$
2. OSCILLATOR CIRCUITS $\$ 4.05$
3. DETECTOR AND

RECTIFIER CIRCUITS . $\$ 4.05$
4. AMPLIFIER CIRCUITS . $\$ 4.05$
5. RADIO CIRCUITS
$\$ 4.05$
A.B.C.'s BOOKS
A.B.C.'s OF COMPUTERS $\$ 2.70$
A.B.C.'s OF ELECTRICITY
\$2.70
A.B.C.'s OF BOOLEAN
ALGEBRA $\$ 2.70$

Obtainable from Leading Book Sellers.
Trade Enquiries - Catalogues.
GRENVILLE PUBLISHING CO. PTY. LTD.
154 CLARENCE STREET
SYDNEY

THE CAPITOL RADIO ENGINEERING INSTITUTE - WASHINGTON D.C. - U.S.A. offers advanced, Specialised training for Technicians and Engineers.

Send for one of these free books.-
1 ELECTRONIC ENGINEERING TECH. NOLOGY - COMMUNICATIONS - AEROSPACE RADAR - SERVO. MECHANISMS AND COMPUTERS SPACE DATA SYSTEMS - SPACE. CRAFT TRACKING AND CONTROL -TELEVISION-RADAR AND SERVO - nUCLEAR INSTRUMENTATION, AERONAUTICAL AND NAVIGAT. IONAL,

2 nuclear engineering techNOLOGY - INDUSTRIAL ELECTRONICS FOR AUTOMATION COMPUTER•SYSTEMS TECHNOLOGY All diploma programmes include lessons in leadership as preparation for advancement to supervisory positions.

> 3 (For Graduate Engineers ONLY) post graduate study pro. GRAMMES FOR ELECTRONICS AND NON-ELECTRONICS ENGINEERS.

THE CAPITOL RADIO ENGINEERING
INSTITUTE

Box E8, St. James P.O., SYDNEY, N.S.W.

Please send me one of these free
books (1) (2) (3)
I am employed in electronics and "have a high school education.

MULLARD OUTLOOK, Vol. 10, No. 2 and testing of materials; in the eval (March-April, 1967) is a special I.R.E.E. of equipment; and in the conduc Convention issue, with 24 pages. Articles interpretation of scientific experime included are: Philosophy of Mullard Integrated Circuit Data Presentation, which explains the method of presenting data on integrated circuits adopted by Mullard; Integrated Circuit Logic Applications, which deals with the uses for Mullard OMY range of integrated circuits in industrial applications, and has an introduction to logic theory; Integrated Logic Circuits, which gives details of the Mullard OMY100 range of logic devices; Dynamic Display Means Extra Sales. Part 4 - The Interior. (One of a series to assist retailers to understand the principles of good display.)
Mullard Outlook is published by MullardAustralia Pty. Ltd., 35-43 Clarence Street, Sydney.

MINIWATT DIGEST Vol. 6, No. 6 (March-April, 1967) is devoted entirely to Part 3 of a series of articles on Digital and Logic Systems. Entitled "Applications of Integrated Circuits," Part 3 considers counting in the binary system, and illustrates this by introducing applications of the Philips range of integrated circuits in some counters of various cycle lengths. Practical circuits given are a shift register, decading circuits, and a free-running clock; also a time delay generator constructed from the standard positive NAND gates. Miniwatt digest is published by the Miniwatt Electronics Division of Philips Electrical Pty. Ltd., 20 Herbert Street, Artarmon, N.S.W. Subscription rate is $\$ 3$ per volume, post free. Single copies cost 50c each, post free.

WESTINGHOUSE ELECTRIC CORPORATION, Semiconductor Division, of U.S.A., has published the "Westinghouse Semiconductor Replacement Guide, containing a cross reference of power transistors, thyristors (SCR's) and rectifier replacements. Outline drawing showing dimensions of the various configurations available are also included. Inquiries should be addressed to the Westinghouse agents, who are Email Ltd., Joynton Avenue, Waterloo, N.S.W.

STC COMPONENTS REVIEW, Vol. 4, No. 4 (April, 1967) has information on: three new variants of the ITT type 24 and 25 miniature relays - magnetic latching, twin contact and $A C$ versions; miniature aluminium electrolytic capacitors; STC solid tantulum capacitors which are qualification approved by the joint services R.C.S.C.; three ITT silicon diodes suitable for use in power supplies. The same issue also has the continuation of an application note on VHF/UHF power transistor amplifier design, begun in earlier issues. Inquiries to Standard Telephones and Cables Pty. Ltd., Moorebank Avenue, Liverpool, N.S.W.

NEW DEVELOPMENTS, the new products magazine of Jacoby, Mitchell and Co. Pty. Ltd, describes the following items: Advance Electronics new 2 MHz timer counter TC7; PRD Electronics, Inc. thermoelectric power meter Model 6685; Alfred sweep oscillator Model 6400 series; Wiltron Company fidelity test sets, Model 701 (voice bandwidth), Model 332 (envelope delay measurements, $30 \mathrm{KHz}-5 \mathrm{MHz}$), Model 601B (swept frequency generator, $50 \mathrm{KHz}-100 \mathrm{MHz}$), Model 350 (LF phase meter, $10 \mathrm{~Hz}-2 \mathrm{MHz}$), Model 321 (phase and amplitude meter), Model 322 (local oscillator, $2.5-100 \mathrm{MHz}$), Model 323 (local oscillator, $100-400 \mathrm{MHz}$), Model 335-336 (wideband FM time delay analyser), Model 310B (multifunction phase amplitude and impedance analyser; TRW Semiconductors new 2 GHz UHF transistor Type 2N4976; Sony Model TC-530 tape recorder. Further details can be obtained from the company's head office at $469-475$ Kent Street, Sydney.
NATIONAL BUREAU OF STANDARDS in the U.S.A. has advised publication of the following:

Experimental Statistics, by Mary Gibbons Natrella. N.B.S. Handbook 91; August 1, 1963, reprinted October, 1966 with corrections; 544 pages. Price $\$$ US4.25. This handbook contains a collection of statistical procedures useful in the design, development
is intended for the user with an engi background who occasionally needs statistical techniques, but who dot have the time or inclination to beco expert on statistical theory or methor

Electrical Parameters of Precisior axial, Air-Dielectric Transmission by Robert E. Nelson and Marlene R. ell. N.B.S. Monograph 96, June 30, 103 pages. Price \$US1.25. This pap vides graphs from which the el parameters of lines can be dete rapidly and accurately.

These publications can be obtaine the Superintendent of Documents, Government Printing Office, Wash D.C. 20402. Remittances must be i exchange and should include an adc 25 per cent on the price to cove charges.

ANODEON SALES DIVISION ha: able the following technical data:-

Transistor Interchangeability Lists popular transistor portable and car including Japanese brands.

Condensed Catalogue No. 10, Se ductors.
Condensed Catalogue No. 7, Tubes.

Engineering Data 660524, silicon re AD100 and AD1000.
Engineering Data 280764, silicon fiers 1N3659-3660-3661.

Engineering Data 650202, silicon fiers 1N3253-4-5-6.

Inquiries to Anodeon Sales Divisior tronic City, 443 Concord Road, F N.S.W., on company letterhead.

EMERSON AND CUMING, IN U.S.A., has a fold-out chart for no or wall mounting which describes th pany's range of general purpose and alty epoxy moulding powders. Infor is given on physical form, bulk f flow grade and colour choices powders, and several applications at strated by photographs. Processing tions, such as the moulding temper pressure and shrinkage are also Mechanical properties of the cured mi listed include maximum operating te ture, tensile, flexural and comp strengths, and thermal properties. Di constant, loss tangent, volume resistiv dielectric strength are also given. An cation selector table lists a large r of electrical and electronic parts wi recommended powder. Inquiries sho addressed to the company's agents, J. McLelland and Co. Pty. Ltd. Crescent, Kingsgrove, N.S.W.

BBC ENGINEERING MONOG N0. 66 (February, 1967) entitled aerial gain calculation using tabl mutual resistance between the radiati ments," has been published by the in London. The authors are P . I B.A., M.I.E.E. and R. E. Davies, M. text covers: Gain computation from resistance - The computation of 1 mutual resistance for verlical radiatir ments, tangential radiating element radial radiating elements - The g a single element - Verification method of computation.

The monograph can be obtained BBC Publications, 35 Marylebone Street, London, W.1. The price is 5 free.

RF POWER TRANSISTORS is a selection guide and graph for RF transistors featuring overlay constr and includes both RCA and J.E. designations. Copies can be obtained Amalgamated Wireless Valve Co. Pty of 348 Victoria Road, Rydalmere, N
"QUARTZ CRYSTAL UNITS" booklet giving details of the Pye rat crystals and explaining how to specil order these crystals. Copies are av free on request from Pye Pty. Ltd., (Division, 59 Arundel Street, Forest Sydney, N.S.W.

MATEUR BAND NEWS AND NOTES

"Australis I" Satellite Shipped to U.S.

he Australian Amateur Satellite AUSTRALIS I, now offically known as "Australis Oscar A," was shipped to the United States on June 1.

By Pierce Healy, VK2APQ*

"Australis Oscar A" amateur radio as the transmitter puts a neavy load on the te, built by the Melbourne University rautical Society and the Melbourne rsity Radio Club, was airfreighted to Francisco for delivery to Project
Three members of the Project team the Melbourne University, Messrs Dunn, Owen Mace and Richard n , will accompany the satellite to the 1 States. They will conduct special on the satellite, as well as having sions with officials of Project Oscar. departure of the satellite for the comes just 15 months after the final was approved. The satellite has been on an entirely voluntary basis of the constructors received any payfor the work they did on the project. most of the electronic components in "Australis Oscar A" were donated istralian firms. The Wireless Institute stralia gave the project a $\$ 400$ grant e purchase of special materials and ments, and the Melbourne University gave a special grant of $\$ 750$.
istralis Oscar A" is a 35 pound gular satellite, measuring 17 inches by ches by 6 inches. The aluminium has been specially strengthened to and the acceleration and vibration of unching into orbit. The satellite will ermally controlled by a black and paint pattern, which will be applied U.S.A. It is hoped that the internal rature of the satellite can be kept a range of 60 deg. to 100 deg. \dot{F}. gh all units have already been tested 10 deg . to 200 deg .
stralis Oscar A" is a test bed for s that will be used in later amateur satellites. It will transmit information e performance of these systems to ir radio tracking stations around the The telemetry system in the satelas been specially designed so that amateurs can decode the information litted from Australis Oscar A. using ely inexpensive equipment. It will take few minutes to decode this informasing charts which will be supplied to io amateurs tracking the satellite.
satellite carries two transmitters ing in the international amateur radio One transmitter operates on a freof 144.050 MHz . This transmitter n average output of 100 milliwatts vill operate continuously from the he satellite is put into orbit until its es are exhausted, about two months aunch.
second transmitter operates on a fre' of 29.450 MHz , and has an average output of 250 milliwatts. This transwill be commanded to switch on and a number of specially equipped ir radio tracking stations. This will le to conserve the satellite's batteries

[^7] batteries.
"Australis Oscar A" is the first amateur radio satellite to carry this type of command system and to carry a transmitter operating the 29 MHz band. This band is of particular interest to radio amateurs, as it can be used for international communications. It is hoped that, by studying the signals from the satellite's 29 MHz transmitter, more can be learnt about which times of the day and seasons of the year are most suitable for using the 29 MHz band for long distance communications.

The telemetry system in the satellite converts data (produced by sensors) such as battery voltage and temperature into audible tones. These tones are then fed to the two transmitters which relay the information to radio amateurs stations on the ground. This telemetry unit is also linked to a keyer, which produces the letters "HI" every 60 seconds.

The satellite carries seven sensors which are fed into the telemetry system. These consist of three horizon sensors, a battery voltage sensor, a battery current drain

10th Jamboree-on-the-Air

The 1967 Scout Jamboree-on-the-Air, the tenth to be held, has been scheduled for the period 0001 hours GMT on Saturday, August 5th to 2359 hours GMT Sunday, August 6th. This coincides with the holding of the XII World Jamboree in Idaho, U.S.A. and also with the 60th Anniversary of the first experimental. Scout Camp on Brownsea Island, England in 1907.
In celebration of Scouting Diamond Jubilee, Scouts throughout the world are planning special camps during this period and it is hoped most, if not all, will be equipped for the weekend of the 5th and 6th August with an amateur station "linking" them with stations both at the World Jamboree and on Brownsea Island.

As in the past no doubt many more members of Scouting groups will be invited by amateur radio operators to participate in the J.O.T.A. from the operators' home stations. The World Bureau Scout station VE3WSB will not operate during this J.O.T.A. Instead, its place will be taken by K7WSJ, operating from the Jamboreee site at Farragut State Park, Idaho, U.S.A.

The station will operate continuously during the 48 -hour period of the Jamboree-on-the-Air, using three complete stations. The following frequencies will be used, according to band conditions.

Band

80 metres
40 metres 20 metres 15 metres
10 metres
28025 KHz using the call sign GB3BS1 The originator of the Jamboree-on-theAir, Les Mitchell, will be in charge of this station. Both stations will issue special QSL cards to all stations they contact.
sensor, a battery temperature sensor and a sensor attached to the inside skin of the satellite. Each sensor is sampled for $7 \frac{1}{4}$ seconds. At the end of the seventh tone, two "HI's are sent, and then the whole sequence is repeated.

The command decoder and receiver system in "Australis Oscar A" will receive specially coded signals from a number of amateur radio tracking stations. These signals will be used to switch the 29 MHz transmitter on and off, to conserve battery power.
A magnetic attitude stabilisation system (MASS), which consists of a permanent bar magnet and hysteresis rods, will stabilise the satellite. This should reduce the effect of signals fading, as the satellite orbits the earth. "Australis Oscar A" is the first amateur radio satellite to incorporate such a system.

It is hoped that "Australis Oscar A" will orbit the earth at a height of about 500 statute miles, with an inclination to the equator of approximately 70 degrees. This would mean that the satellite would orbit the earth once every 103 minutes and it would complete 15 orbits every 24 hours. Although the radio equipment will operate for about two months, it is expected that the satellite will remain in orbit for 50 to 100 years.

Project Oscar Inc., is a California-based organisation of radio amateurs. They have built four amateur radio satellites since 1961. All of these have been successfully

The following are call signs of Scoutoperated amateur stations in Great Britain - GB3BPH and G3TGS in London (Baden Powell House); G3TZR in Liverpool; G3MVH in Halifax; G3RSS in Rastrick; also G3BHK, G2CAJ, G3FXC, G3SDG, G3VNU, G3VQR, G3VHK, G3VJL and G3VKZ.
During the 9th J.O.T.A. held on October 1966, the World Bureau Official Station, VE3WSB recorded contacts with the following Australian call signs: VK6RU, VK5LC, VK5NM, VK3SD, VK2AFY and VK9XI.

In recent years, participation by Australian amateurs has been among the highest in the world, and contacts with Australian stations are eagerly sought after. The event enables many young people to be introduced to amateur radio and has been a means of excellent publicity for the amateur service.

The Wireless Institute of Australia, along with kindred bodies throughout the world, recommends participation by members in the Jamboree-on-the Air. All that is necessary to participate is to contact a local Scout group or District Scoutmaster and either arrange for members of the group to visit your station, or to set up portable equipment at a Scout Hall or camp site. Scouts are very adept at erecting antennas.

The event is not a contest but rather a means of allowing an exchange of greetings between local and overseas Scouting groups by means of amateur radio.

WARBURTOM FRAMKI

AFTER-STOCKTAKING SPECIALS

KNOBS Attractive white knurled edge. Black face with gold moulded pointer. $1 \frac{1}{2}$ " diameter. 9/16" deep. Standard $t^{\prime \prime}$ bore in brass bush. 20 c ea. or $\$ 2.25$ doz. Inc. pack. and post.

MICROPHONE

CABLE, TWIN
t" diameter. Black P.V.C. covered. 100 yard rolls.

$$
\$ 15.75 \text { ea. }
$$

inc. pack. and post.

PANEL METERS

MR2-P SIZE-12" Square
0-500 Microamps
. . \$3.25
0-1 Milliamp ... \$3.10
0-300 Volts A.C. .. $\$ 3.10$
P25 SIZE-21" Square
0-1 Milliamp $\$ 5.00$
CR3-P SIZE-3" x 34"
$0-300$ Volts AC
. $\$ 4.85$
P60 SIZE-6" $\times 44^{\prime \prime}$
0-1 Milliamp
\$8.60
MOVING IRON AC/DC METERS

SIZE—18" Square-
\$3.50 each.
$0-1,0-5,0-10,0-20 \mathrm{amps}$.
$0-10,0-20,0-40,0-50$ Volts
ANY OF ABOVE-POST FREE.

HIGH STABILITY
 RESISTORS

1 Watt $\pm 1 \%, 15$ ohms to 8.2 megohms
1 Watt $\pm 2 \%, 11$ megohms to 30
megohms
Famous Rosenthal Brand Made in West Germany.
Write or Call for List of Values Available 25c each. Post Free

SAPPHIRE STYLI

ALL TYPES
STEREO L.P. OR STANDARD
Any single Tip 75c each
Any double Tip \$1.25 each

DIAMOND STYLI

ALL TYPES
STEREO L.P. OR STANDARD
Any Single Tip \$3.25 each
Any Double Tip \$4.50 each
(One Diamond)
(One Sapphire)

> Post Free.

VALVES

American Sylvania Type 807.
\$1.75 each
Post Free

WORLD FAMOUS
 POLYPACS

No. 1-30 carbon resistors, asst. watt and 1 watt, prese too. $\$ 1$.
No. 2-20 asst. capacitors, 5 eac paper. plastic, mici ceramic. \$1.
No. 3-20 silver mica capacitor inc. 5 per cent values. $\$ 1$
No. 5-100 assorted rubber gron mets. \$1.
No. 6-35 assorted $\frac{1}{2}$ watt resisto (English Erie). \$1.
No. 7-25 assorted 1 watt resisto (English Erie). \$1.
No. 8-50 assorted component including resistors. mis condensers, tubular condes sers, styroseái condenser grommets, transistor tran former and potentiomete \$1.
Guaranteed A1 quality. Popula brands. 1 pack postage. 4c. 3 pack post free.

MONDO 6 TRANSISTOR TAPE RECORDERS MODEL MH-6A

Featuring-Automatic Level Cor trol and simple Push Button Oper: tion. Will take up to 5 " reels. speeds $3 \frac{7}{4}$ and $1 \frac{7}{6}$ I.P.S. Capsta Drive. Microphone has remote cor trol switch. Twin track.
$\$ 55.00$
Freight Free.

NEW
 POWER SUPPLY
 BASIC KIT

Consists of:
One Transformer tapped for 9^{\prime} and 12 V at $500 \mathrm{~m} . \mathrm{a}$.
One full wave contact cooled Rect fier.
One 1000mfd 15 V.W. Capacitor. Make your own 9 or 12 Volt powe pack to supply transistor radio: record players, slot cars, toys, ets

MINIATURE LOW VOLTAGE ELECTROLYTIC CONDENSERS

2 to 100 mfd in $6,12,25$ and 50 V.W. Bags of 25 assorted.

$\$ 3.50$

including pack. and post.

AUDIO AMPLIFIER MODULES

4 transistor-1 watt output. High Impedance Input-100,000 ohms. Low Impedance Input- 1,000 ohms Output-4, 8 or 16 ohms. Power Source-6 Volts. Gain-70DB. Size of board, $4 \frac{1}{2} " \times 2^{\prime \prime}$ approx. Weight: 6 ozs. Supplied with circuit and wiring instructions.
$\$ 8.50$
inc. postage.
... Supplied with wiring diagrar
$\$ 3.00$
Inc. postage.

:hed into orbit. Oscar I and II were ins which relayed temperature data to Oscar III and IV were fitted with unications repeaters which were used dio amateurs to relay morse and voice ges across the Atlantic and Pacific s.
\because "Australis Oscar" project team have in close contact with Project Oscar during the construction of the Ausn satellite. Project Oscar Inc. has 1. to negotiate with United States hing authorities for a ride into orbit the "Australis Oscar A" satellite. was not known at the time of preparlese notes when the launching is likely e place. When this information comes and, details will be given over all 1 Wireless Institute stations and local services.
ject Australis gratefully aknowledges ind assistance of the following organ1s, without whose help the construction e satellite would not have been pos-
ne Engineering, Melbourne (radio nncy connectors) - Cannon Electric) Ltd., East Brighton, Melbourne (reand connectors) - Ducon Conden'ty. Ltd., Villawood, N.S.W. (all cap; used in the satellite) - Fairchild alia Pty. Ltd., Croydon, Melbourne, ransistors and diodes used in the (e) - The Potter Foundation, urne (travel grants to Project Oscar n the U.S.A. for two persons)-Pye td., Melbourne (all radio frequency is used in the satellite). - Rola Co.) Pty. Ltd., Melbourne (magnetic attistabilisation system magnet)-Sample onics, Melbourne (circuit boards) r Industries Ltd., Melbourne (satellite 1ae)-Union Carbide Australia Ltd., y (flight and backup battery packs). y Components Division also gave a grant for a third person to accom:he satellite to the United States.
nks are also extended to the MeteoroJepartment of the University of Mele and the Bureau of Meteorology, surne, who have been most helpful, he past 15 months.

i.G.B. DX Contest Result

results of the Fifth R.S.G.B. 7 MHz contest held late last year do not a great interest on the part of urs in Oceania. In the CW section logs were submitted by Australian is, while in the telephony section one call sign appeared.
the CW receiving section of the conte first and third places were taken ustralian Short Wave Listeners. The of the CW section was - A. J. G3FXB 3447 points. Australian station ons were:-
P. J. Dettman VK3APJ 850 points I. E. De Cure VK5KO 700 points I. Stafford VK3XB 400 points al logs received - 138.
the telephony section the winner was: ibson G13OQR 2997 points a total of 37 logs submitted, last in was occupied by: I. Stafford [B 200 points.
the CW receiving section:
rge Allen, West. Australia, 1740 points.
Tribilcock, Victoria, 1300 points.
1967 R.S.G.B. 7 MHz contests are set for Telephony Section, 28th-29th Oc-
Telegraphy Section 11th-12th No:r.
es for the contest will be given in the er issue of these notes.

21 MHz and 28 MHz Contest

196721 MHz and 28 MHz R.S.G.B. ony contest will be held on the 14th 5th October. Rules for this contest ppear in the September issue of these With conditions improving on these there is reason to anticipate some very contacts during the contest.

WIRELESS INSTITUTE ACTIVITIES

A booklet entitled "How to Become a Radio Amateur" is being prepared by the Federal Executive of the Wireless Institute of Australia. This will give the person who desires to obtain an amateur operator's licence, all the details on the assistance the Institute can offer the prospective amateur. It will also answer many questions about amateur radio including those generally asked by those preparing themselves for the required P.M.G. examination.

Copies of the booklet may be obtained by writing to the Federal Secretary, Wireless Institute of Australia, Box 2611 W , G.P.O., Melbourne.

NEW SOUTH WALES

The council of the New South Wales Division has instituted a membership drive. The aim is to extend to amateurs living within the State who are not already members, an invitation to join the institute. Already more than 50 per cent of the licensed amateurs are members and it has been suggested that each member should endeavour to obtain one new member.

An increase in membership will allow an increase in the services and facilities available to members. Details of membership fees and other information can be obtained by writing to the Secretary, N.S.W. Division W.I.A., 14 Atchison St, Crows Nest.

Hunter Branch

The lecturer at the May meeting of the Hunter Branch was Lionel Dooland. VK2ZLD, well known as a lecturer of Electronics at the Newcastle Technical College. He chose to speak about "Professionalising Amateur Equipment" and his lecture was a very practical one twhich outlined the
various methods of metal treatment and construction.
In addition, he showed several completed items of equipment which employed the techniques described. One of the largest audiences in recent years, 50 members and visitors, attended the lecture. As has become the policy, the meeting commenced with a colour film. The topic on this occasion concerned the manufacture and use of printed circuits.
The July meeting which is to be held in Room 6 of the Clegg Building, Newcastle Technical College, will be addressed by Gordon Sutherland, VK2ZSG, who has the reputation for reworking the popular "Command" series receivers, will outline his most popular conversions, including one for double conversion to improve selectivity.
The meeting, which commences at 8 p.m. will feature a film of interest to amateurs and short wave listeners. The Hunter Branch President, Frank Boundy, VK2ZFX, extends a welcome to all radio enthusiasts in the Newcastle area to be present at this and any Hunter Branch meetings. The meetings are held regularly throughout the year on the first Friday of each month.
Several Newcastle amateurs were hosts during May to Nubuo Matsukura who as JA3API/MM is well known to operators on the 80 and 40 -metre bands. Nubuo was making a short visit to the city while his ship London Maru was in port. The amateur station operated by Nubuo has a power input of 25 watts to a long wire antenna and has tallied up the impressive total of 188 countries while mobile marine. He usually operates on 3550 KHz between 0800 and 1200 hours GMT while in Australian waters.

BRIGHT STAR CRYSTALS

PREFERRED BY LEADING MANUFACTURERS THROUGHOUT THE COUNTRY FORACCURACY STABILITY - ACTIVITY - OUTPUT

All types of Crystals Available. Such As DC II, FT 243 HC $6 U$ CRA B7G, HCI8U, ETC.
TOLERANCES: $0015 \%, .002 \%$, .003\%, .005\% ETC.
Consult us for Crystals for any mobile Radio. Prices depend on tolerance and frequency required.
DISCOUNT FOR QUANTITY ORDERS
Established 36 Years
AMATEUR AIRCRAFT and ULTRASONIC CRYSTALS also AVAILABLE Our new Factory employing the most modern equipment allows us to offer you PROMPT DELIVERY for all your CRYSTAL requirements.

DEVOTED EXCLUSIVELY TO THE MANUFACTURE OF PIEEO ELECTRIC CRYSTALS

Coniraciors to Federal and State Government Deparimenis
representatives australia and new zeacand messrs. carrbl \& carrel.

MESSRS. ATKINS (W.A.)
LTD., 894 Hay Street, PERTH.
MESSRS. A. E. HAROLD
PTY. LTD.. 123-125
Charlotte Street, BRISBANE
BRIGHT STAR RADIO
546-5076

RADIO HOUSE PTY. LTD.

306.308 PITT ST., 6 ROYAL ARCADE AND 760 GEORGE ST., SYDNEY

SPECIAL PURCHASE

Set of three posted \$3.75

CHROME VAN

German screwdriver and pocket tester.

1. 6-12 volt model auto test.
2. Sparkplug tester.
3. 110-380 volt mains tester. \$1.25 each
NEW MODEL A-10 MULTIMETER AND SIGNAL INJECTOR

With Test Leads and Injector Probe

30,000 o.p.v.

SPECIFICATIONS: 6in x $21 / 2$ in scale.
DC Voltase: $0-0.5,2.5 .10$. $50,250,500,1.000 \mathrm{~V}$ at 30,000 o.p.p. 5,000 and $25,000 \mathrm{~V}$ at 10,000 o.p.v.
AC Voltage: 0-2.5: ${ }^{10}{ }^{50}{ }^{50}$ ${ }^{250,000} 500.11 .000 \mathrm{~V}$ a 10,000 o.p.v.
Volume Lerel in Deelbels. DC Current: $0-50$ uA. 1 . $50.250 \mathrm{~mA}, 0-1$ and 10
AC Cur
0 Curremt: 0-1, and 10 amps. esmance: $0-10 \mathrm{~K}, 100 \mathrm{~K}$. $1 \mathrm{M}_{1} 100$ Megohms. Signal Injector Output Jack. Protection.
Price $\$ 60.00$

MULIIMEIER TESTERS

Model RH. 50

Modern Design, 33 Micro Amp Meter.
30,000 Ohms per Volt D.C.
13,000 Ohms per Vole A.C.
1 p.e. Multipliers and Shunts used. Printed circuis.
Clear Scale, rugsed moulded case.

specIfications

DC Voltages: 0-0.3-1.2-3-12-30-120-300-600-1,200 V at 30,000 Ohms per volt.
AC Voltages: 0-3-12-30-120-300. $600-1,200 \mathrm{~V}$ at 13,000 Ohms per volt.
DC Current: $0-06-6-60-600 \mathrm{~mA}$, 0-12 A.
Resistance: 0-60K-6M-60M (350, $35 \mathrm{~K}, 350 \mathrm{~K}$ at mid-scale).
Decibels: minus 20 to plus 57 $\mathrm{dB},(0 \mathrm{~dB}$ equals 1 mW .600 ohms).
Audio Out: Capacitor in series with AC volt ranges.
Short Test: Internal buzzer.
Accessory: 1 pr. heavy teat leads.

Prico \$31 (215/8 with leather case, $\$ 3$ Portage 50c to $\$ 1$ ex Batteries: 1 (1.5V), 1 (1: Size: 3 9-16" I 6 3-16" Weight: 1.41 b approx.

TRANSISTOR HEARING AID
First Phone Model 3 Transistors
This Hearing. Aid is an ultra-modern unit. It incorporates the following outstanding features:

Ample power and clear tone.
Compact,
Precision printed circuit design.
Magnetic earphone.
Separate Tone and Volume Controls.
Standard size torch cell.
Packed in a presentation case.
New Model $\$ 31.50$
Replacement Battery only 12c. Postage 50c extra.

LIMITED STOCK ONLY Model RH-10

RANGES:

DC Voltages: 0-10-50-500-1,000 V at $2,000 \mathrm{Ohms} \mathrm{V}$.
AC Voltages: $0-10-50-500-1,000 \mathrm{~V}$ at 2,000 Ohms V.
DC Current: $0-500 \mathrm{uA}$ 0-500 mA. Resistance: 0-10K-1Meg: 60 ohms, 6 K ohms at centre scale.
Capacitance: 250 uuF to 1 uF , in two ranges.
Decibels:-20 to plus 36db, two ranges.
Output: $0-1,000 \mathrm{~V}$ in four ranges.
Size: $\sin \times 3$ in $\mathrm{in} \times 1$ sin.
Weight: 1302 approx.
Price $\$ 10.75$ ($25 / 7 / 6$)
 Postage 50c to $\$ 1$ extra.

Price $\$ 18$ ($£ 9 /-/-$) Postage 50c to $\$ 1$ extra. Complete with internal battery. testing leads with prods.

TRANSISTOR POWER

TELEPH
$\$ 12.1$
eacl

WANTED

SALESMAN FOR OUR RADIO ELECTRICAL COUNTER
Enquirios phone $61-3832$ or write to 306 PITT STREET, SYDNEY

Iuswellbrook Amateur Radio Club
z inaugural meeting of the MuswellAmateur Radio Club was held on May 67. This club, which is affiliated with J.S.W. Division, will serve amateurs itending amateurs in the Upper Hunter :ts.
ficers elected were:
sident: Ken Mitchelhill, VK2ANU.
e-president: Les Baber, VK2RJ.
retary: P. J. Charlton.
asurer: H. Ewen.
nmittee: K. Miller, J. Woods, J. TimN . Cameron.

QUEENSLAND

Townsville Amateur Radio Club meettre held on the first Thursday of each 1 at 8 p.m., in the Auditorium of Station 4TO, Townsville. At Lay meeting, members discussed the ility of participating in the "Australis" te project. From the enthusiasm shown ms certain that the Club will be supg such a scheme.
ce Noseda, VK4ZMI, has been elected 1 Class Instructor and now has two ; under instruction. These are held on lays at the 4 TO auditorium. Elemenlasses are held from $8.30 \mathrm{a} . \mathrm{m}$. to 10 ind advanced classes from 10 a.m. to a!m.

SOUTH AUSTRALIA

May issue of the South Australian on's journal contains some interesting on the use of FET transistors. WritRick Matthews, VK 5ZFQ, the article information on the use of these dein VHF convertors. The journal ulated to all financial members of the n . An invitation is extended nsed amateur operators, who are not y members. to join the division. Appli; for membership should be made to aretary, W.I.A. South Australian Divi3ox 1234K, G.P.O., Adelaide.

WESTERN AUSTRALIA

the Annual General Meeting of the n Australian Division, held in April, allot for the 1967-1968 council was The office bearers for the ensuing re:
on: W. G. Hayman, VK6GH.
ident: R. Chamberlain, VK6RY.
-President and Technical Officer: V. ley, VK6VK.
-President and Bulletin Editor: W. G. VK6WY.
etary and Federal Contest Manager: Penfold, VK6ZDK.
surer: K. Moore, VK6ZBT.
idcast Officer: R. Elms, VK6BE.
th Club Co-ordinator: Rev. Bro. J. $\mathrm{n}, \mathrm{VK6RT}$.
.F. Officer: L. Jessop, VK6ZEA.
;ram Organiser: G. Sturcke,VK6ZEZ.
Officer: J. Rumble, VK6RU.
stin Distributor and "A.R."
R. Greenway, VK6DA.
he annual report the retiring presi'. Kitney, VK6VK, referred to the ing membership of the division, the level of attendance at general is and the need to give serious conion to the formation of a Region III :nce.

W.A. VHF Group

teur television test transmissions were d to be taking place on the 432 MHz in Perth and to assist those who to receive these signals, the details construction of a 432 MHz convertor :n published in the May issue of the roup bulletin. The convertor is to be read of a standard TV receiver and pproximately $\$ 3$ to build. Two type or 2N3564 transistors are used. group's club station operates beacon tters on 52.006 MHz and 144.198 MHz ously with automatic CW identificaIl sign VK6VF, with approximately
d key-down position between call
bers of the group meet on the fourth y in each month in the D.C.A. Worknteen, 86 Guildford Road, Maylands, m . Visitors are welcome to attend.

R.S.G.B. NEWS

The editorial in the April edition of the Radio Society of Great Britain bulletin draws the attention of British amateurs to the Wireless Telegraphy Bill published at the beginning of March. It is pointed out that the sweeping blanket powers conferred on the Postmaster-General by Part II of the Bill, if passed by the British Parliament in its present form and placed on the Statute Book, could place the very existence of amateur radio in jeopardy.
"The heading of Part II is innocuous enough - 'Miscellaneous' - but the side heading should give the red light - 'restrictions of manufacture or importation of certain apparatus.' Under section 7. (1) and (2) of the Bill if the PMG 'specifies' apparatus, no person shall manufacture, whether or not for sale, any apparatus of that class or description; and the importation of apparatus of that class or description is prohibited.
"The only limitation placed on the powers of the P.M.G. to specify equipment is that it must be related to 'interference,' which could be extended logically to include any form of receiving, test or transmitting equipment containing an oscillator. It will be seen that not only may one not buy 'specified apparatus' but also it may not be built, so that by carrying the possibilities to their full limit you could be in serious trouble by constructing a grid dip oscillator.
"It will, of course, be said that the P.M.G. would never use his sweeping powers to prohibit amateur equipment, but what P.M.G. would consider himself bound by the words of his predecessor in another government. Many reasons could be found for a change of policy. No, this is not the answer, which lies in a nation wide effort to prevent this Bill from becoming law in its present form.
"Have our friends, who advertise in the pages of the 'Bulletin' considered the possible effect on their trade if this consists mainly of selling components to the thousands of constructors throughout the country Restrictions in the types of equipment which may be built in the home workshop note the words - whether or not for sale - could put them out of business."

Other comments refer to the power to prohibit importation of wireless apparatus as presumably designed to restrict the flood of walkie-talkies which are now causing interference to television receivers. Members of the R.S.G.B. are also urged to record their disapproval of the Bill in its present form, to their Members of Parliament.

I.T.U. NEWS

The 22 nd session of the Administrative Council of the International Telecommunication Union opened on Saturday May 6th at the I.T.U. Headquarters in Geneva, Switzerland. The session continued until May 27 th. The Council consists of the representatives of 29 countries, who were elected from among the members of the Union at the Plenipotentiary Conference held in Montreux, Switzerland, in 1965. These countries are as follows.

Region A (Americas): Argentine Republic; United States of America; Canada; Mexico; Republic of Venezuela; Brazil.

Region B (West. Europe): France; Italy; Confederation of Switzerland; Federal Republic of Germany; United Kingdom of Great Britain and Northern Ireland; the Channel Islands and the Isle of Man; Ireland.
Region C (East Europe and North Asia): Union of Soviet Socialist Republics; Federal Socialist Republic of Yugoslavia; Peoples Republic of Poland.
Region D (Africa): Kingdom of Morocco; Republic of Dahomey; Federal Republic of Nigeria; Algerian Democratic and Popular Republic; Ethiopia; Malagasy Republic; Uganda.
Region E (Asia and Australasia): Japan; Commonwealth of Australia; Republic of India; Pakistan; Lebanon; Kingdom of Saudi Arabia; China.

At its first Plenary meeting the Council elected as chairman Mr Proinnsias L. O. Colmain (Ireland), who had been vice-chairman of the 21st
Henryk Baczko
session in
(People's
Republic
of

HAM RADIO SUPPLIERS
(Established 1947)
5a Melville St., Hawthorn, Vic. 86.6465

STEREOGRAM AND
 TUNER CHASSIS

Medium Fidelity. 4 Valve (2 x 6BM8, $1 \times 6 \mathrm{~N} 8,6 \mathrm{~N} 7$). Aust. made. Straight line dial, mono tuner, 15 ohm, approx. 3 watts per channel output, as new. Fully tested, ideal for use as Tuner or Built-in Unit, etc. PRICE: $\$ 30$ inc. NEW valves or $\$ 25$ less valves. MSP 6^{*} speakers to suit. $\$ 4.50$ ea.
STEREO RECORD CHANGER
Balfour "Princess" STEREO, 4speed. Automatic 10 record changer. Made in England. Complete with Ronette Ceramic Cartridge. Brand new in carton.

PRICE: \$25, inc. post.
STEREO RECORD PLAYER. as above. Less Automatic Mechanism. Player only, including Cartridge. Manual operation.

PRICE: \$14, inc. post.
STEREO RECORD PLAYER. Very well-known make. Semiautomatic operation, Ronette Ceramic Cartridge, 4-speed.

PRICE: \$19.50.

WALKIE TALKIES

50 Milliwatt, 4 Transistor, operating frequency 27.240 Mc. Crystal locked Transmitter, 1 to 4 -mile range. In open country

PRICE: $\$ 35$ a PAIR TO CLEAR.

GRID DIP METER TE-18
$360 \mathrm{Kc}-220 \mathrm{Mc}$ in 8 bands, plugin coils, can also be used as a Field strength meter or signal Generator. Few only at this price: $\$ 34.00$.

STEREO PREAMPLIFIER

(4 Transistor).

Solid State Phono-Tape Stereophonic Pre-amplifier, Matches most types of Magnetic Cartridges and Tape Heads.

SPECIFICATIONS:

Power Amplitude: 45 db plus or minus 1 db .
Maximum OUTPUT: Plus 11 db in distortion of less than 1 p.c. (900 mV).
Freq. Response: 35 to $18 \mathrm{~K} / \mathrm{c} \mathrm{c} / \mathrm{s}$. Noise Ratio: Minus 45 db or more. Max. Input: Minus $35 \mathrm{db}(16 \mathrm{mV})$. Normal Input: Minus $45 \mathrm{db}(5 \mathrm{mV})$ Power: 240 V AC.

Complete in Metal Cabinet.
PRICE: \$19.50.

TV PICTURE TUBES

Direct from factory Same Day Service Duds with air taken

PRICES TO THE TRADE ONLY

All sizes except bonded-14 to 24 inch prices plus dud and freight.
New one year warranty $\$ 12.00$
Rebuilt, 2 year warranty $\$ 12.00$
Rebuilt, 1 year warranty $\$ 11.00$
Seconds (most types) $\$ 8.00$
Bonded, 23 inch new one year $\$ 26.00$
Bonded rebuilt 1 year $\$ 24.00$
Bonded rebuilt seconds $\$ 16.00$
5 inch 70° magnetic test tube $\$ 8.00$
Scratched duds, $\$ 2$ extra charge All duds must be rebuildable Air in dud $\$ 3$ extra charge. (Air in bonded dud $\$ 6$ extra)
DUD DEPOSIT:
14 to 21 inch 70°
14 to 21 inch 90° $\$ 6.00$
23 inch $\$ 10.00$
23 inch Bonded \$ 9.00

COUNTRY CUSTOMERS: Send to Lewisham Station, freight paid. Passenger rail. Also available at slightly higher prices at 1120 Oxley Rd., Oxley, Brisbane. We pay cash for rebuildable duds.

Sure Bríte Picture Tubes

Poland) as vice-chairman. It also ap chairmen and vice-chairmen for the committees (Finance, Staff, Technic operation).

The meeting was opened by Mr Rutschi (Switzerland), chairman of tl session. Mr Rutschi, welcoming thi gates of the 29 member countries Administrative Council, recalled tl event of 19th February 1967, when D Sarwate, Secretary-General of the died. He invited the meeting to ob: one-minute silence in memory of I wate. He also recalled how Mr Moh Mili (Tunisia), Deputy Secretary-C had taken over the duties of Se General ad interim, in accordance International Telecommunication tion (Montreux 1965).

Mr P. L. O. Colmain, the new ch of the Administrative Council, then t the meeting for the honour confer his country and himself by his elec such important duties. After review program of work facing the present he invited the council to pay tribute memory of former participants who h since the previous council session. Baczko, the new Vice-chairman, thanked the Council.

Mr Mili, Secretary-General ad intı the I.T.U. welcomed the members Council and reviewed the various adn tive and technical problems raised by activities. He emphasised that "as it e on this second century of its ex there is no doubt that the two mail lems facing the I.T.U. are those c nical co-operation and space teleco cation."

VHF DX ACTIVITY

Two letters giving some most int details of the VHF band conditi northern Australia have been r Writing at the beginning of May Lindsay, VK4ZPL, of Townsville, land, stated:-
"As the Australian Sporadic E. DX faded in February, the 52 MH opened to the north and has bee every day since. While I expecter northern openings to last only unt April, it is now well into May a openings are just as strong and col
"The variety of stations that received at this location is amazir sound stations can be heard between and 49.5 MHz . Meteor scatter stations between 49.5 MHz and 50 MHz . J and JH stations operate between and 52 MHz , with by far the number operating within the first. of the band. In addition in this section JA radio-telephone services IGY stations can be heard.
"JA stations have been heard as 52.7 MHz trying to contact Au stations. In the Australian six meti 52 MHz - 54 MHz , Chinese AM may be heard usually between 53 M 53.4 MHz . Some evenings jamming can be heard.
"Needless to say the three local six-metre stations VK4ZRG, VK4Z VK4ZPL have each worked all areas many times over. Recently t KA station was heard and worker KA 7 AB , can only hear VK stations first 100 KHz of the Australian bani transmits SSB in the first 100 KHz 50 MHz band. More KA stations on the air shortly.
"Russian TV pictures have been 1 in Townsville during April, similarly channel 0 pictures have been rece Japan."

Michael Richardson, VK8ZMR, Darwin, Northern Territory writes:". - a note to provide some information regarding the tremendol DX success to the north. Dou Arthur, VK8KK, Alice Springs ha working openings to Japan since to late February 1967
"Barry Burns, VK8DI, Darwin ha ed about 90 JA and JH stations wh included all JA call areas and JI April 1, he worked KR6TAB."

Referring to his own achiev Michael wrote: "Worked first break

JOHN MOYLE MEMORIAL - RESULTS

foster.

dynamic microphones

*MDF-600B
cardioid microphone

SPECIFICATIONS
Impedance: $\quad 50 \mathrm{k} \Omega$
Frequency Response: $100 \sim 10,000 \mathrm{c} / \mathrm{s} \pm 8 \mathrm{~dB}$
\dagger Sensitivity : $-52 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: $148 \times 48 \times 34.5 \mathrm{~mm}$ without stand
Cable : 4 ¢ mm, 3 m
Weight : $11 / 4 \mathrm{lbs}(525 \mathrm{~g})$

DF-IDE

SPECIFICATIONS
Impedance :
Frequency Response : $150 \sim 10,000 \mathrm{c} / \mathrm{s} \pm 8 \mathrm{~d}$
Sensitivity : $-57 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: 385.5 mm high
21 mm diameter, microphone 128 mm diameter, stand
Cable : 4 कmm, 1.5 m
Weight: $15 / 6 \mathrm{lbs}(840 \mathrm{~g})$ with cable
*DF-14B

SPECIFICATIONS
Impedance: $\quad 50 \mathrm{k} \Omega$ Variable
Frequency Response: $100 \sim 10,000 \mathrm{c} / \mathrm{s} \pm 8 \mathrm{~dB}$
†Sensitivity : $-48 \mathrm{~dB} \pm 3 \mathrm{~dB}$
Dimensions: $136 \times 75 \times 47 \mathrm{~mm}$
Cable : 6 कmm, 4 m
Weight: 2 lbs (900 g)

DF-12/*DF-12B
SPECIFICATIONS
Impedance: $\quad 50 \mathrm{k} \Omega$
Frequency Response: $80 \sim 12,000 \mathrm{c} / \mathrm{s} \pm$? + Sensitivity : $-57 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: 23 mm diameter, 158 mm
Cable : 3 क mm, 1.5 m
Weight: $6.302(180 \mathrm{~g})$ with cable

*DF-2B

SPECIFICATIONS
Impedance :
Frequency Response : $100 \sim 10,000 \mathrm{c} / \mathrm{s} \pm$
Sensitivity: $-56 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: $75 \times 53 \times 30 \mathrm{~mm}$
Cable: $3 \phi \mathrm{~mm}, 1.5 \mathrm{~m}$
Weight: $4.802(136 \mathrm{~g})$ with cable
*DF-22B

SPECIFICATIONS
Impedance:
$50 \mathrm{k} \Omega$
Frequency Response : $50 \sim 12,000 \mathrm{c} / \mathrm{s} \pm 7 \mathrm{~dB}$
tSensitivity: $-57 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: 32.5 mm diameter, 220 mm long
Cable: 6 क mm, 4 m
Weight: $11 / 4$ lbs $(575 \mathrm{~g})$

*DF-5 1 B
SPECIFICATIONS
Impedance
$50 \mathrm{k} \Omega$
Frequency Response: $150 \sim 8,000 \mathrm{c} / \mathrm{s} \pm$
\dagger Sensitivity: $-57 \mathrm{~dB} \pm 3 \mathrm{~dB}$,
Dimensions: $98 \times 58 \times 36 \mathrm{~mm}$
Cable : 6 क mm, 1.6 m , Coiled
Weight : 7.3 oz $(207 \mathrm{~g})$ with cable

1967 W.I.A. REMEMBRANCE DAY CONTEST

1967 Remembrance Day Contest wili be ted under the new set of rules proposed if Mitchell VK3UM, and adopted by the if Council of the Institute at the 1966 il Convention held in Brisbane. The period in the ratification of the declslon of Federal set down for the contest did not ailow ederai Contest Comittee time to publish lew rules appiving. in accordance with
, major changes in the contest reiate to: eh formula used to determine the score of ch division;
trastate scoring for all bands above 52 MHz be Included in the total points of a rision.
contest is heid in memory of Austrailan who paid the supreme sacrifice during War iy for competition between the six divisions ose members and so perpetuates their y throughout amateur radio in Australia.
lame of the winning division each year , Inscribed on the trophy and in addition, finning division will receive a suitably ed certlficate.
ECTS: Amateurs in each Coil Area. Includustralian Mandated Territories and Ausrs in other call areas on all bands. urs may endeavour to contact any other ir on the authorlsed bands above 52 MHz iFtrastate contacts whil be permi
TEST DATE: 0800 hours GMT Saturday, 12. 1967 to 0759 hours GMT Sunday. amateur stations are requested to observe nutes slience befo e the commencement of itest on saturday afternoon. An approduring this period. ES:
here shail be four sections to the contest: (a) Transmitting Phone
(c) Transmitting open
(d) Receiving open.
il Australian amateurs may enter the Whether their stations are fixed, portable bile. Members and non-members of the s ins
ards.
II authorised amateur bands may be used oss-modion in not permitted.
mateurs may operate on both Phone and uring the contest. l.e., CW phone to phone. try may be submitted for sections (a) to rule ${ }^{1}{ }^{\text {open }}$
open log will be one In which points 5. Refer to rule 11 concerning log entrles. or scaring oniy one contact per station can be made on the same band using sernative mode. Arranged schedules for
; on the other bands are prohibited.
ulti-operator stations are not permitted. iog keepers are permitted, only the his own call sign. Should two or mare operate any particular station, each will sidered a contestant and must submit a log under his own call sign. Such conshall be referred to as "substitute s. for the purpose of these rules
e: Substitute operators will call "CQ RD" the, station they are operating, then the log", followed by their own oall sign,
Q Remembrance Day from VK4BBB log
Substitute operators will call "CQ RD de",
i by the group call sign comprising the n of the station they are operating the stroke and their own call sign, e.g..
de VK4BBB/VKABAA.:
:stants receiving signals from a substitute Wign qualify for points by recording sign of the substitute operator oniy.
itrants must operate within the terms of ences.
PPHERS: Before points may be clalmed intact, serial numbers must be exchanged res wIII be made up of the RS (teleor RST (CW) reports plus three figures.
II Increase in value by one for each
ie contact. 'e contact. contestant reaches 999 he will start th 001.
tries must be set out as shown in the possible standard W.I.A. lag sheets be used. Entries must be clearly marked brance Day Contest $1967, "$ and must
narked not later than september 4. 1967 . entrles to: Federal Contest Manager. a. Late entrles will be disqualified.
a) Interstate sooring is as per published Intrastate scoring for all bands above will be on the basis of one polnt per Portable Operation: Long scores of operarking outside their own call areas will ace, e.g., VKSZP/2. His score counts toew South Wales total points score. II logs shali be set out as in example

To	VKO	VK1-2	VK3	VK4	VK5-8	VK6	VK7	VK9	
「rom VKO	-	6	6	6	6	6	6	6	
"	VK1-2	6	-	1	2	3	5	4	6
" VK3	6	1	-	3	2	5	4	6	
" VK4	6	1	2	-	3	6	5	4	
" VK5-8	6	2	1	3	7	5	4	6	
" VK6	6	1	2	4	3	-	5	6	
" VK7	6	2	1	4	3	5	-	6	
" VK9	6	1	2	3	4	5	6	-	

NOTE: Read pable from left to right for points for phe various call areas.

EXAMPLE OF TRANSMITTING LOG

	ando	$\xrightarrow[\substack{\text { tumsiow } \\ \text { rume }}]{\text { and }}$	${ }_{\text {cubak kiov }}$	\%	Rextco pr	ponis clameo

EXAMPLE OF RECEIVING LOG (VICTORIA S.W.L.)

$\begin{aligned} & \text { DATE/ } \\ & \text { TMME } \\ & \text { G.M.T. } \end{aligned}$	BAND	EMISSION	CALL SIGN	RST SENT	STATION CALL	POINTS	CLAIMED
Aug. 1967							
120810	7MHz	A3(a)	VKSPs	58002	VK6RU		
120812	7 MHz	A3(a)	VK6RU	59007	VK7EJ		
121035	52 MHz	A3	vK4zaz	56010	VK5zDR		
121040	52 MHz	A3	vK3ALZ	59025	vK30V		

shown, In addition will carry a front sheet showing the following Information Address

Ciaimed Score
Cail Sign
No. of Contacts
Declaration: I hereby certify that I have operated in accordance with the rules and spirit of the contest.

Signed

All contacts made during the contest must be shown in the log submitted (see rule 4). If an no score claimed. and Entrants in the 12. The Federal Contest Manager has the right to disquallfy any entrant, who, during the Contest, has not observed the regulations or who of operating ethics. The Federal Conitest Manager also has the right to disallow any lllegible, incomplete or incorrectiy set-out logs.
th. Whe russ of Contest Manager no dispuies will be discussed.
AWARDS: Certincates will be awarded to the three tap scoring stations in each of section (a) to (c) of rule 1 above, in each call area. each call include top scorer in each section of and above. VK1, VK8, VK9 and VKO will count as separate areas for awards. There will be no may be awarded at the discretion of the Federal Contest Manager.
The divislon to which the trophy will be award By using the equation,
where $\mathrm{S}=$

$$
P+175(N-E)
$$

where \mathbf{S} ㅇ States Trophy Taily Points
where $N=$ Total score of State
Where $E=$ Entrants from State concerned
VK8 wlth VK5.

The trophy shail be forwarded to the winning divislon in its container and will be held by that division for the speoified period.

RECEIVING SECTION

1. This sectlon is open to all Short Wave Listeners in Australia, but no astive transmitting 2. Contest time
2. Contest times and logging of stations on 3. All logs shail be set out as shown in the exampie. The scoring table to be used is the same as that used for transmitting entrants and points must be cialmed on the basls of the A sample to clarify the position is shown above
" it is not sufficlent to log a station calling "CQ" be logged. number he passes in a contact
It is not permissibie to log a station in the same call area as the receiving station on the
M.F. and H.F. bands 1.8 MHz to 30 MHz , but on bands 52 MHz and above such stations may be logged, once only per band, for one point. K1/VK2 and the same area for scoring purposes.
3. A station heard may be logged once on
hane and once on CW for each band.
4. Club receiving stations may enter for the beceiving Section of the contest, but will not ever. if sufficlent entries are received a special award may be given to the top receiving station in Australia. All operators. must sign the declaraion

AWARDS: Certincates will be awarded to the hlghest scorers in each call area. Further certifcates may be awarded at the discretion of the Federal Contest Manager.

ATTENTION!

 TRIUMPH OF SYDNEYCopied you April 29.1967.
P.S.T. our time. Couidn't
7.45
reply. CAROL SCHLUNEGER, KND 1858

WIRELESS INSTITUTE OF AUSTRALIA
 (Victorian Division) A.O.C.P. CLASS
 commences
 MONDAY, 21 st AUGUST, 1967

Theory is held on Monday evenings and Morse and Regulations on Thursday evenPersons desirous of being enroiled shouid Secretary W.I.A., Victorian Division, (Phone: $41-3535$. 10 a.m. to 3 p.m.) or the Class Manager on either of the

New Elecirolytic Condensers

These condensers are miniature pigtail type insulated new stock in packets of 12 , each packet containing; $3,16 \mathrm{mfd}$ 300 V.W., $2-32 \mathrm{mfd} .300 \mathrm{~V} . \mathrm{W}$. ., 125 mfd .450 V.W. and 6 low voltage electrolytics. \$2.50.

Post and packing 20c extra.
NEW IMPORTED 4'‘ P.M. SPEAKERS
Available with a 4 or 16 ohm voice coil. \$2.50.
Post and packing 30c extra.

NEW IMPORTED SLOT CAR KITS A LESS THAN HALF PRI

Complete kit of parts including motor and full instructions.

$\$ 2.50$ post 25 c

Imporied National Transisiforised Shoulder Megaphone

These shoulder megaphones manufactured by National Radio Japan have an output of 4 watts, and are supplied complete with inbuilt horn type speaker, batteries and microphone. List price $\$ 78$.

Special Price $\$ 50$. Post extra Other types also available.

NEW STEREO CHANGER.
4-SPEED F.O.R.

POWER TRANSFORMER

Prim. 240V Sec. 350 volts a side. 60 M.A. One 6.3 V , one 5V F11.
\$2.75
Post N.S.W. 60 c , Interstate $\mathbf{3 0}$ c.

LEADER SIGNAL GENERATOR IS
240 V A.C. operated, 6 band 120 KC to 390 Provision sor crystal. Interstate, s1.25 $\$ 29$
Post N.S.W., 75c: Ind

BATTERY CHARGER RECTIFIERS

 New Selenlum Rectifers, 6 or 12 volt at 4 amp., $\$ 3.75$. Post, N.S.W., 20c;Interstate, 20 c . Transformer for above rectifier tapped for 6 to 12 volt, with Intersiate, 20c. Transtormer for above rectifier tapped for 6 to 12
circult for charger, $\$ 4.75$. Post, N.S. W., 75 cs Interstate $\$ 1.00$. As above, 6 or 12 volt, at 2 amp., $\$ 2$. 75 ." Post, N.S.W., 35 c ; Interstate, 45 c . Tranformer for above, $\$ 3.75$. Post, N.S.W., 35c; Interstate; 45c.

NEW 24OV. A.C, MOTORS

These amall motora, alze $\sin x 3 \ln \times 31 / 2 \ln$, are $1-12 \mathrm{~h}$ but are only iultable for intermittent use. $\$ 2.95$. but are only suitable for
N.S.W. 35 c ; Interstate 50 c .

\$9.75 ($£ 4 / 17 / 6$) POST FREE

NEW AMERICAN TV POWER BOOSTER UNII
 AT LESS THAN HALF PRICE

(EX LIQUIDATION STOCK H. G. PALMER) These TV POW-R boosters can be used in two ways. Firstly as a "straight-1 circuit giving extra boost to the TV signal for improved performance on receiver. Secondly to boost signal strength to two or three TV receivers coupled to one aerial.

Full instructions supplied with each unit. 240 volt A.C. operation.

NEW 4"
 EXTENSION SPEAKERS

These 4" speakers are mounted in polished cablnets suitable for use as intercom, units or extension speakers. LIST PRICE SPECIAL PURCHASE ENABLES US TO SELL THESE UNITS AT $\$ 4$.
 Post and packing, N.S.W., 68e. Interstate, 98c.

A PREAMP FOR MAGNEIC PICK-UP OR TAPE HEADS

 SUITABLE FOR USE WITH THE COLLARO OR B.S.R. TAPE DECKS Using 3 silicon transistors as featured in October Electronics Australia complete with kit of parts including transistors mono $\$ 7.50$, stereo $\$ 13.00,240$ power supply for above $\$ 7.00$.

NEW $17 \& 25$ WATT P.A. AMPLIFIER

The 25 Watt Amplifier uses 5 valves plus 2 rectifiers including two EF86 low noise valves microphone preamplifier and two EL34 valves Ferguson push-pull output.
All amplifiers are fitted with Ferguson output transformers with voice coil tappings of 2 to ohms. The 25 watt amplifier can be supplied with line output transformers tapped from to 600 ohms if required at $\$ 2.00$ extra.
Inputs provided for microphones. pick-up, and radio with mixing facilties and tone cont The 15 watt is as above but using two 6 BQ 5 valves in push-pull output.
12 in speaker for above (10 watt)
$\$ 6.75$.. 6
Crystal Microphones for amplifier .
$\$ 4.75$. . 4

NATIONAE RADIO SUPPLIES

$\$ 23.75$ ($£ 11 / 17 / 6$)

NEW TRANSISTOR SIX PORTABLE KIT AT LESS THAN HALF PRICE
 (DESIGNED TO SELL AT OVER $£ 30 /-/-$)

 Excellent fidelity is obtained in this new kit set by the use of large speaker and polished timber case with attractive gold metal front panel. By using heavy duty batteries it is economical to operate and is ideal for portable use or that second set. Complete kit of parts is supplied with full instructions. CAN BE SUPPLIED WIRED AND TESTED AT £2/10/- EXTRA.Post and packing N.S.W.. \$1.25 - Interstate. \$1.75.

RESISTORS, CONDENSERS AND POTENTIOMETERS
 have purchased the resistor and condenser sfock of mannfactursrs incluiling S.T.C. and Stromberg-Carison who have ceascd the manu-

 lure of television and radio receivers and can offer the same at less than 25 per cont of list price. resistors are mainly I.R.C. ..id Morganite in values frea 200 ohm. to 5 aisg. in $1 / 2,1$ and 2 watt ratings and include some wire ind resistors.condensers are in me, $\$ 9.01$ pe: 100 . Our price, $\$ 2.00$ per 100 . c, paper, and and packing 25c extra.
price, $\$ 1 i$ per 100 . Our price, $\$ 2.06$ per 100 .
price, SIl per 100 . Our price, $\$ 2.06$ per 100 . poitch pots, dual concentric and T.A.B. pots.
price, $\$ 12$ per dozen. Our price, $\$ 2.50$ per dozen.

- FE For a limucd ncriod with each lot of sesistors, condensers or potentiometers purchased we will supply fres. packing, 2.5 c extra. Five Type 6Ula. 6XSOT of 114.

PECIAL - OFFER

implete KIT for TRANSISTOR 6 PORTABLE $\$ 17.50$

e complete kit of parts for the transistor six includes six transistors, printed suit board, coil kit. 4 in speaker. Ferguson driver and output transformers. ivy duty battery and all necessary parts to complete the set with full inuctions. Set is housed In nitractive plastic case ay illuatrated.
Is available for all States. Post and Pack: extra. N.S.W., \$1.00), Inter., \$1.30.

A. $23^{\prime \prime}$ E.H.T. transformers and $23^{\prime \prime} 110$ deg. deflection yokes. New manufacturer's stock E.H.T. units $\$ 3.00$. Deflection yokes $\$ 3.00$. Post free

NEW VALVES AT HARGAIN PRICES

EXTENSION SPEAKEIS
;0 New 9 x 6 speakers in $\begin{aligned} & \text { ease. } \\ & \text { Post: Interstate, 5Sc: } \\ & \text { N.S.W. }\end{aligned}$
N POWER TRANSFORMERS
1 prim.: 240 v with 230 v tapping Sec. $\times 285$ with 6.3 v filament winding. 1, $\$ 3.00$. Plus Postage: N.S.W., 35 c ; state, 52c.
: 240 v . Sec. 385×385 at 80 mA . fil. ind $5 \mathrm{v}, \$ 4.50$. Post.: N.S.W., 40 c ; itate, 75 c .
1 H.T. Chokes, 75c. Post.: 20c.

T.M.K, MULIIMEEERS

Before buying see our range of T.M.K. test instruments. As advertised in April issue of Electronics Australia.

TYGAN AND SARLON

 SPEAKER GRILLE FABRIC List price $\$ 8.00$ per yard. To clear at $\$ 5.50$ per yard. Postage and packing N.S.W., 3/6.
NEW MINATURE MOTORS

Ideal for models, toys, etc. $1 \frac{1}{2}$ to 3 volts. 6,000 r.p.m. 39 c each or $\$ 3.50$ per doz. Post 10 c .

- ISTELIIIG AROUND THE WORI
 Art Cushen's monthly report on

 Iong-distance short-wave, television and broadcast band reception.
Deutsche Welle Relay on El Salvador

Radio Deutsche Welle, the Voice of Germany, at Cologne, has announced plans for building of a relay base in El Salvador, to cover North and South American areas.

Some months ago, Deutsche Welle announced that they would establish relay bases in Central America and Southern Europe in addition to the Kigali relay in Rwanda, Central Africa, which began broadcasting in 1965. The new Salvador relay base will have two transmitters of 250 KW and one of 150 KW , while another transmitter of 100 KW will carry programs on medium wave. The Kigali station with its 250 KW transmitters is well received on its several frequencies in the Pacific area. The station was commenced in June, 1964, at Kigali and 18 months later it began relays of the Cologne programs for reception in Africa.

The Voice of Germany, Deutsche Welle, has been in operation more than 10 years. It has become firmly established with short wave listeners, and signals are beamed to all areas of the world. The Deutsche Welle has its studios in Cologne, and the transmitters are at Julich, about 38 miles from Cologne, near the Belgian frontier. The station has 28 masts (the tallest of them rising to about 300 feet) to carry the transmitter aerials for all the short wave frequency bands. Beams can be switched in opposite directions by push-button controls. Six 100 KW transmitters feed the aerial system. Emergency transmitters of 20 KW are also provided at the site. At present the Deutsche Welle is broadcasting in 14 languages, in 27 programs. The address of the station is Deutsche Welle, P.O. Box 344, Cologne, Federal Republic of Germany.

WORLD RADIO CLUB

This month the B.B.C. commences its new program for the short wave listener, World Radio Club. The session replaced Short Wave Listeners' Corner, which was on the air for some years, but was cancelled last year. The new session, whose title is taken from the World Service on which it is now carried, is to be non-technical and will cover items that interest the short wave listener and radio amateur. Special reference to B.B.C. expansion plans and broadcasting techniques which the B.B.C. has adapted for their use will be featured.

Henry Hatch, of the B.B.C. Engineering Division at Bush House, London, who was a frequent contributor to the old program, has been asked to put some of his ideas into the new series. These should assist listeners to the B.B.C. to learn more about broadcasting, and also help them to improve their reception of short wave transmissions.

DX JUKE BOX

Radio Nederland's DX Juke Box program now has four contributors each month, each of whom gives DX information from his particular part of the world. The program is broadcast at 0745 GMT on Thursday on 11730,9715 and 9525 KHz , and is repeated in all English transmissions for that day. It is also carried from Bonaire. The first Thursday is Arthur Cushen's Pacific DX Report from New Zealand; on the second Thursday it is Marc Olander's Scandinavian

GOOD SIGNALS FROM LATIN AMERICA

This winter season has again been noted for some excellent signals from Central and South America, both in the afternoon and late evening listening period. A survey of some of the most interesting signals, compiled from the "New Zealand DX Times" and our own observations, follows,:-

KHz	Callsign	HCRQ1
4925	OAX9E Quito. Ecuador has been heard	
opening at 1100GMT.		

DX report; the third Thursday is the sion for Glen Houser's North America Report, and on the fourth Thursday ten van Delft gives his Benelux D port. When a fifth Thursday occurs month, a report on the progress c European DX Council is given in th sion.

Additionally the predictions for wave reception for the month are on the first Thursday, and in each ly program listeners' letters on tec questions are answered. The program interspersed with popular music and, ε sent, the lessons in the current propa course are given one week, and the lesson repeated the following week.

JAMMING INCREASES FROM EU

Earlier this year the U.S.S.R. re jamming of Radio Peking progra Russian. These transmissions were jammed in early August, 1963, unt end of October the same year. In month, the Soviet Union also start jam Radio Tirana broadcasts in \mathbf{R} and Bulgarian. The jamming of Peking transmissions was discontinued three months, but Radio Tirana is still jammed as we go to press. The U is no longer using the traditional ty jamming. The earlier jamming periods characterised by taped callsigns in code. The new jammers do not re callsigns and the jamming noise cons extremely over-modulated distorted missions of ordinary broadcasts, repor Swiss DX Session.

LLH OSLO USES 9645 KHz

A new frequency for Radio N 9645 KHz with the callsign LLH, is used to serve North America 0400 GMT. In the Monday transmission E is used throughout. The station's announcement lists 9610 and 11850 K also being in the chain. On other da the week, Oslo has Norwegian in its missions, and at 0425GMT there is minute broadcast in Spanish. The E transmission "Norway This Week" is ried on all the Sunday transmissions Oslo, with the session to New Zealan Australia taking the air 0800-0830 using 11850,15175 and 17825 KHz .

CAMBODIA USING 4935 KHz

The transmissions of the Voice of bodia, in the 60 -metre band, have bet served on several channels, in an a by the station to find a good clear The station is now observed on 493 with 15 -minute sessions in French at and English 1245 GMT , and resumi normal local programs at 1300GMT stations has sessions in English 234 (Sunday 0045), 0545 and 1245 GM further session $0145-0415 \mathrm{GMT}$, on KHz , is a relay of the home servic further transmission is scheduled 1440GMT while news is at 0200 and GMT. Medium-wave signals from F Penh are also noted on 1425 KHz wi news in English at 1245 GMT . The is notorious for not replying to lisi requests for verification, and is one few countries which we hear regularl have been unable to confirm.

WWV USING GMT
The National Bureau of Standards ions WWV (formerly of Washington, and now of Fort Collins, Colorado
iter station WWVH in Hawaii have reverted to the use of GMT for all innouncements. The WWV announcerecently have been in Mountain ard Time and WWVH used Hawaiian ard Time for many years. The use of will be welcomed by listeners. The ; of both stations are well received $00,5000,1000$ and 15000 KHz . The 1 has speech announcements of the in GMT each five minutes, and has 1 pulses as well. Details in CW are on ionosphere conditions and receponditions generally. WWV signals are ; the most accurate in the worldthan 1 part in 10^{10}-and can be as marker points for receiver calibra-

.C. CENTRAL AFRICAN RELAY

B.B.C. has been operating a Central n relay station at Francistown near ?hodesian border for some months.)resent transmissions on the station, th medium and short-wave, are as s: $0400-0600$ on $4845 \mathrm{KHz} ; 0600-0830$ 95: 1530-2045 on 4845. The mediumrelays 602 and 926 KHz carry the schedule and additionally the World $20545-0600$. The station carries locriginated programs at $0430-0445$ on ays, on 602,926 and 4845 KHz .

CLANDESTINE STATIONS

long established "Radio Espana InIencia," which has operated from years from Eastern Europe with probeamed at Spain, has at last been 1. The station has the mailing address).B. 359 Prague, Czechoslovakia. The is on the air $0600-0630 G M T$ on $11260,12140 \mathrm{KHz}$, and $1530-2330-$ on $6950,7600,10110 \mathrm{KHz}$.
io Euzkadi, La Voz de la Resistencia (postal address P.O. Box 59, Paris rance), broadcasts in Spanish and : daily 2030-2100. 2130-2200 and 300 on $15080,13250 \mathrm{KHz}$. The statinfirms reception reports by letter in 1 , and identifies in Spanish, Basque glish.
lew station is planned on Navassa between Haiti and Cuba. The island led by the United States. The trans, will be 50 KW MW and 20 KW SW, vill operate on the lines of Radio za, with Spanish programs.

:LASHES FROM EVERYWHERE

YSIA: Kuala Lumpur has been ob:d on 5965 KHz at 2255 to 0015 GMT . station has commercial programs, news in English at 2330GMT. The otion of Kuala Lumpur has been reed in South Africa. The station now ies with a new card showing a map of yysia with a flag on the left hand er, and with a short history of Malayand verification details on the reverse

RIA: Lagos, with the broadcasts of Voice of Nigeria, has sessions in ch at $1300-1400,1900-2100 \mathrm{GMT}$; in sa 1400-1500; English 1500-1600, -1900 and 2100-2200; and Arabic -1700. All these transmissions are on i, $9690,11900 \mathrm{KHz}$.
NAM NORTH: Radio Hanoi is on laily in English at 1000-1030, on 7210 $\mathrm{KHz} ; 1300-1330,1530-1600$ on 1240, , 9640,11840 ; and at $230-2330$ on I, $9840,11840 \mathrm{KHz}$.
NESIA: Djakarta, in its program ice of Indonesia,"' is well received on KHz with programs in English for in and New Zealand $1900-2000$ GMT. mailing address of the station is P.O. 157, Djakarta.
lANY: Radio Free Europe now broad-
from Germany, and its extensive schedule gives some of the most esting reception. We have heard the KHz channel in Polish 0355-0550T and $2110-2310 G M T$. They use 1 KHz in Hungarian 0355-0530 and

STATION SCHEDULE CHANGES

RADIO PRAGUE ENGLISH SCHEDULE

Radio Prague's English language transmissions has now put into operation four frequencies in the 13 metre band, in its overseas service of English transmissions schedule, which is valid to October 22 in broadcasts from Czechosolvakia.

GMT	AREA	KHz	
$1200-1230$	Europe	$9560,11960,15285$	
$1900-1930$		$5930,7345$.	
$1530-1630$	Africa	$6055,11990,15285,17840,21735$.	
$1730-1830$		$5930,7345,11990,17840,21620$.	
$1400-1500$	North America	$15448,17705,21450$.	
(Sunday)		$7345,11990,15368,17840$.	
$0100-0200$		$5930,7345,11990,15368$.	
$0330-0430$		$6055,9550,15310,21450,21700$.	

RADIO NEW ZEALAND SCHEDULE
A new schedule now in operation by Radio New Zealand, Wellington, includes the use of a new frequency 17770 KHz in its Australian beam.

GMT

1700-1945
2000-0545
0600-0845
2000-2230
2245-0545
0900-1145
0215-0245
0815-0845

AREA
Pacific

Australia

Antartic (Sun. only)
y) \mathbf{Z}

ZL7	11780.

ZL21 15110.
ZL3 11780.
ZL5 17770.
ZL5 17770.

During the service to Antarctic, 17770 is withdrawn 0200-0300, and 11780 at 0800-0900GMT.

The program up to $0545 G M T$ is relayed from the NZBC Home Service, and from 0600 GMI the transmisison is the special Radio New Zealand service to the Pacific and Australia.

The monthly DX Session, "Arthur Cushen's DX World" is carried on the first Wednesday at 0645 and 1030 GMT on 9520,11780 , and the following Saturday at 2345 GMT on 15110 and 17770 KHz .

ENGLISH FROM RADIO NORWAY

Radio Norway at Oslo on Sunday each week has a 30 -minute program in English called "Norway this Week," which is heard in transmissions directed to a world-wide audience. The present schedule is:
GMT AREA KHz
0800 Pacific, Far East, Africa.
1200 North Europe, Pacific, Far East.
1400 America, Indonesia, Australia.
1600 America, Middle East, S. Africa.
1800 America, Africa.
2000 America and East Africa.
2200 West Europe, South America.
0000 (Monday) America.
0400 North and Central America.
0400 North and Central America. $9645,11735,11850$,
Power is 120 KW except when indicated with * when it is 10 KW

The Swiss Broadcasting Corporation has altered its schedule to make each transmission of 75 minutes duration. Also, they commence 15 minutes later than formerly.

GMT

0130-0245 0515-0630 0715-0830 0915-1030 1115-1230 1315-1430 1515-1630 1900-2045

0015-0115 0330-0430 1400-1500 2130-2230
$1030-1100$
$2100-2130$
$2315-2345$

1815-1845

1700-1730 1745-1815

CHANGES FROM BERNE

ENGLISH
11850, 15175, 17775, 21655*, 21730* 7240. 15175. 17825, 21655*, 21730* 15345, 17825, 21655*, 21730, 21670* 15345, 17825, 21655*, 21670*, 21730 11850, 17825, 21655*, 21670*', 21730 15345, 17825, 21730, '21655*
15345, 17825, 21730, 21655\%
11735, 15175, 15345, 21655*

ENGLISH

ZL18 9520, ZL3 11780.
ZL18 9520, ZL3 11780.

ZL3 11780.
9560, 11960, 15285
5930. 7345.

6055, 11990, 15285, 17840, 21735.
5448, 17705, 21450.
7345, 11990, 15368, 17840.
5930, 7345, 11990, 15368.
6055, 9550, 15310, 21450, 21700.
ne ser

THE LUX SQ-101 SOLID STATE STEREO AMPLIFIER -

THE LUX SQ 65-30 WATTS R.M.S. PER CHANNEL

With a wide frequency response of $20-20,000 \mathrm{~Hz}$. plus or minus $1 \frac{1}{2} \mathrm{~dB}$. at full output, the circuitry of the SQ 65 incorporates silicon diodes and P.P. 7868's, output being 30 watts R.M.S. in each channel. Input sensitivity is 4 mV . for magnetic p.u. Tone compensation circuits include a U.S. patented M.F.B. system and new Lux NF electronics. Substantial grain oriented output transformers of unique design are responsible for the outstanding performance of the SQ 65. Features include tape monitoring circuit, phase switch, blend control, speaker switch, headphone jack, scratch filter and rumble filter. The MFB circuitry is effective on normal speaker systems. Write for complete specifications
\$199

NEW LUX AMPLIFIER SOON TO BE RELEASED

An all new model, the SQ 1220, will soon be available. This solid state stereo unit is rated at 56 watts R.M.S. into a 16 ohm load in each channel. Production of this superlative amplifier will be restricted so enquire now! Full specifications on request. Price is expected to be very close to $\$ 300$.

New vistas in electronics have been opened by search division of the Lux Corporation, Japan's manufacturer of high quality amplifiers and ass equipment. Engineering and wiring are most met as detailed examination discloses. The NHK Broad Network use Lux amplifiers-and the Olympic Stad Tokyo was equipped with Lux public address s: Much Lux electronic circuitry carries world wide and is exclusive to Lux amplifiers. As Australian Encel Electronics Pty. Ltd. has selected a number models; in every case the unit offers remarkable and is fully guaranteed.

This fine silicon transistor stereo amplifier is rated watts peak power output and distortion is neglig normal lounge room listening levels. Frequency re is $15 \cdot 50,000 \mathrm{~Hz}$. plus or minus 2 dB . Magnetic ser is 3.5 mV , tape head input 1.8 mV and additional f include unique bass and treble control circuitry per changeable crossover frequencies for both high a ranges. High cut (scratch filter), low boost (lo control), tape monitor, speaker switch, headphon and normal treble/bass controls are standard. Ust 16 ohm speaker systems power output is 15 watts per channel. The audio excellence of the $\mathrm{SQ}-101$ is , even to the untrained ear. Earlier substantial shi sold out in a few days!

NEW MOVING MAGNET STEREO CARTRIDGE

The Lux T-15-M has been acclaimed as a brilliaı former by discriminating audio enthusiasts-fre response is conservatively quoted at $20-20,000 \mathrm{H}$ stylus pressure is from 1 to $2 \frac{1}{2}$ grams. Tracking a 15°, output is 5 mV . at 1 kHz . Stylus sizes availa 0.7 and 0.5 mil. conical diamonds. From a musi preciation point of view the Lux T-15-M compares ably with cartridges twice the Encel price. \$2

LUXURIATE WITH LUX!

= = cronlcc PIY. LTD.

Head Office: 431 Bridge Rid, Richmond, Vic. Tel. 423762 City Branch: 18 Bourke St, Melbourne. Tel. 322672 Sydney Store: 257 Clarence St, Sydicy. Tal. 29 4563, 29 Ground floor. 2SW Builang
Australia's Greatest Hi-fi Gentre
Wholesalers.

- Trade ins acc
)-2300GMT, while 3995 KHz is used izech 0357-0600 and 2130-2300GMT. the 13 M band, Radio Free Europe sheduled on 21575 in Roumanian at :-0800; 21600 in Hungarian at 0800 I; 21665 in Czech at 0815-1500; i5 in Roumanian at 1500-1900; 21680 Bulgarian at ,1600-1815; 21720 in :h at $0800-1900 ; 21745 \mathrm{KHz}$ in Polish 810-1845GMT.
I ISLAND: The station operating from island in the Caribbean has dropped use of its short wave frequency of KHz and now uses medium wave , 1160 KHz , with the power of 50 KW . programs are all in Spanish from -1330 and 2200-0200GMT. The sta-
has the mailing address of P.O. Box Miami, 1, Florida.
CO: Station XEO1 is reported to be d by Bob Padula of Melbourne with logan, "Radio Mil," on 6010 KHz , to : at 0800 GMT . Other reports mention heavy sideband interference from o Havana, Cuba, using 6015 KHz , h we also experience. XEFT, using KHz , and listed with 250 W , has been d at 0500 at times, but also has severe rand trouble. Verification from this on has been received in 14 days by a ih American listener.
ICCO: This country is now verifying rts with a new folding card which ; the details in English, French and jic. As well, the station sends a full rage of the station's schedule on ium wave and short wave frequencies. reception at present is 1830 to 2300 I on the frequency of 11735 KHz with rams beamed to Europe. The trans${ }^{3} r$ is located at Tangier and uses the er of 50 W . English is heard at 2130 T on this channel.
UGAL: Lisbon is using the frequency 1660 KHz , with programs from 1345 700 GMT in Portuguese, beamed to Verde. Lisbon is also using 15380 -$2130-0100 \mathrm{GMT}$, with Portuguese ied to Brazil, and Spanish, 0100-0145. ish to the United Kingdom is 2045on $7130,6025 \mathrm{KHz}$, and to North rica $0200-0245$ and $0345-0430$ on , $6185,6025 \mathrm{KHz}$.
EN: Stockholm is now on a new dule and the changes which have notified are as follows: 0900-1030Γ on 21690 (replacing $2: 585$) to Jle East: 1730-1930GMT on 15240(17840) to Africa; 1830-1930 on 0 (11705) to Africa; 2025-2115 on 5 (11705) to North America, and -2345 on 11810 (9620) to South :rica.
ICCO: Rabat has a service in Spanfrom 2300-2355GMT. Best reception 115390 KHz . The station is also reed to be using 7255 KHz with the program, with transmissions beamor reception in South America.

OTES from readers should be sent ARTHUR CUSHEN, 212 Earn :t, Invercargill, N.Z. All times are :nwich Mean Time, add 8 hours for h, 10 hours for Sydney and 12 hours Wellington time. All frequencies in tertz (KHz) previously shown as ycles (KC).
: Damascus is using the frequency 0 KHz in Arabic 1300-2300 for liss in North Africa when they relay Home Program. Between 1900-2300 use 15165 KHz for the same program; re this time, the frequenoy is used its foreign language service to ıpe. The 15165 KHz channel has been rved with English, 1600-1700 and ch, $1800-1900 \mathrm{GMT}$. The service Damascus to South America has
been observed on 17865 KHz from -0100GMT.
IA: Station ELWA, located at Mon, is heard in New Zealand at good at 1900 GMT . The program at this is in Arabic and it continues in language to 2000 GMT , when ch has been noted on the channel.

RADIO CANADA'S INTERNATIONAL SERVICE

The overseas service from Montreal, Canada includes the use of the 13 metre band for its service to Africa and Europe. The service to the South Pacific remains unchanged. The full service is:

GMT	AREA	$\mathbf{K H z}$	
0725-0820	Africa	9625, 5990	B.B.C. relays
		21610, 17715, 15390)	
0825-0935	Aust.-New Z .	9625, 5970.	
1055-1212	Europe	21460, 15365,	9625.
1215-1313	United States	15365, 11720,	9625.
1316-1342	Europe	17820. 15365,	11720.
1345-1830	Europe	21460, 17820,	15365.
1830-1958	Africa	21460, 17820,	15320.
2000-2152	Europe	21460, 17820,	15320.
2200-2250	Northern Canada	17820, 15190,	11720.
2300-0045		15190, 11945,	9625.
0100-0230	U.S.A. and S. Amer.	15190, 11720,	9625.
0230-0600	North. Canada	11720, 9625.	
0600-0705	Europe	11760, 11720,	9625.

The station is also observed with English at 2200 GMT , but has weakened in signal level by this time.
ITALY: Vatican Radio has altered its frequency in its service to South America, which is now beamed on 17860 KHz . The station opens at 2400 GMT with a program in Spanish which continues to 0020 GMT . The station is well received, but suffers some sideband interference from Radio Australia on 17870 KHz .
LEBANON: Beirut has moved to the 16 M band for its South American service, and uses the new channel of 17760 KHz . The station opens at 2300 GMT with 30 min utes in Portuguese, then follows an hour in Arabic and the final 30 minutes is in Spanish to sign off at 0.100 GMT . Beirut has also altered its transmission in some other services to higher frequencies, for our winter reception period.
ITALY: Rome, in its service in Italian for Latin America, operates 2230 to 0100GMT. The frequency of 17770 KHz is used, and this is mixed with Radio New Zealand, as well as suffering sideband interference from Hilversum on 17775KHz , in its Dutch service to South America.
EULGARIA: Sofia used the new 16M-band channel of 17800 KHz for its service to South America. The transmission in Bulgarian is on the air 2300 to $2325 G M T$. This is the first time we have noted Sofia in this band. Signals are at good level, but a weaker signal on the same frequency causes some slight interference to the broadcast.
SWITZERLAND: A new 16M-channel for New Zealand reception is on the air from Berne at 0715 GMT on 17890 KHz . Signals are mixed with a Radio Taiwan station on the same frequency, and the Berne signals are much better on 9590 and 11775 KHz . The new transmission time is also carried for reception in Europe with the program broadcast on 6165 and 9535 KHz . This English transmission is not in the service to Europe on Sundays.
POLAND: Transmissions from Radio Warsaw to the British Isles are now on the following schedule: $1830-1857 \mathrm{GMT}$ on $9525,7125 \mathrm{KHz}: 1930-2000$ on 9525 , 7285,7125 ; 2030-2100 on 9675, 9540; $2130-2155$ on 9525,$7125 ; 2230-2300$ on $9540,7285 \mathrm{KHz}$.
DOMINICAN REPUBLIC: Station HIMS Radio Cristal, Apartado 1322, Santo Domingo, is operating on BC 570 KHz , and also has a short-wave transmission on 5010 KHz . Transmitter power is 800 watts. The station operates $1100-0500-$ GMT, and requests reports from overseas. Return postage is not required.
FINLAND: During the present winter period the Helsinki station's daily transmission to North America will be on 1518 KHz , with English at 2300 and Finnish at $2315-1400 \mathrm{GMT}$.
SWEDEN: Transmissions from Stockholm have undergone some changes. Broadcasts which have been changed are: To North America (East Coast) 0000-0230 on

11805 KHz ; to West Coast of North America, $0300-0430 \mathrm{GMT}$ on 11705 KHz ; to South Asia $0445-0615$ on 17840 KHz ; to Europe $0900-1215$ on 9625 KHz ; to Far East 1100-1215 and 1230-1330 on 15240 KHz ; to Australia and New Zealand, $2245-2345$ on 9620 KHz ; to South Asia, 1400-1530 on a new frequency, 21585 KHz ; to Africa, $1715-1930$ on 17840 KHz .
BULGARIA: Radio Sofia is noted on the new channel of 11955 KHz , with English transmissions to Africa, 2105-2130GMT. The same program is also carried on 11970 KHz , and at $1905-1930$ a transmission on 15312 KHz is broadcast.
MOZAMBIQUE: The program of the Radio Club of Mozambique, Lourenco Marques, is noted on 11775 KHz . The program is in English from sign on at 0330GMT. The station has opening announcements in both English and Afrikaans before programs commence at $0330-G M T$.

BROADCAST BAND NEWS

PHILIPPINES: Voice of America has withdrawn its transmitter at Malolos, which has operated for many years on 920 KHz with 50 KW . The transmitter carried the V.O.A. programs for reception in the Philippines. The external coverage from the Philippines was handled by the transmitter on 1140 KHz with the power of 1000 KW broadcasting $1200-1630 \mathrm{GMT}$. The other megawatt transmitter of V.O.A. in the Pacific, at Okinawa, continues to operate on 1178 KHz , and is on the air $1100-1600$. The V.O.A. station at Saigon on 760 KHz broadcasts $1100-1630$ and power is presumed to be 50 KW .
THAILAND: The Australian Government through SEATO has given three transmitters to Thailand to counter Peking propaganda. The transmitters, two of 50 KW and one of 10 KW , are already in operation. The 50 KW transmitters are at Korat, 140 miles north-east of Bangkok and Khon-Kaen, 230 miles north-east of Bangkok. The 10 KW unit is at Ubol.
NEW ZEALAND: Transmission hours of several N.Z.B.C. statious have already been extended. Sign on of Hamilton 1XH is now 1700 GMT on weekdays. Programs of this station are relayed by 1 ZO (1420), 1ZU (1520), 1ZD (1000) and 1ZC (1350). Later this year, Taupo, 1 ZA 1500 KHz will join the network, which specialises in early morning music and news for farmers.
The Hawkes Bay station 2ZC, which has previously operated from studios in Napier on 1280 KHz has since June also had studio facilities in Hastings and will operate from this site for half of its broadcasting time on the air. The station runs a 1800-1200GMT schedule except on Saturday, when sign on is at 1900 GMT .

136 VICTORIA ROAD, MARRICKVILLE - 51-384!

220S 4000 O.P.V. D.C. Volts 5, 25, 125, 500, 2300. A.C. Volts ${ }^{\text {5 }} 10$. $50,230,1000$. Current: $2504 \mathrm{~A}, 250 \mathrm{~mA}$. Resistance: 0.10 K . 0.1 Mes.
£3/19/6 Post 5/-
C.T. 330 20K.OPV
D.C. Volts 6, 6, 30, 120, 600, 1200. 3000, 6000. A.C. Yolts, 6, 30, 120. 600 mA Resistance, $6 \mathrm{~K}, 600 \mathrm{~K}, 6 \mathrm{meg}$. 60 meg . D.B. minus 20 to plus 62 5 Ranges. Specially suitable for translstor use
$\$ 15.95$ Post, $\mathbf{5 0 c}$.
C.T. 500 20K.OPV
D.C. Voits, 2.5, 10, 50. 250. 500, 1000, A.C.
1000 D.C.
Volts,
Current, 500 mA . Reslstance, 12 K , 120 K , 1.2 meg., 12 meg. D.B. minus 20 to plus 62
$\$ 13.25$ Post., 50c

P.T. 34 1000.OPV
D.C. Volts, $0,10,50,230,300$, A.C. Volts, $0,10,50,250,500$,

1000
00.500 RESISTANCE
$\$ 5.25$ Post., 50c.
200H. 20K.OPV
D.C. Volts. 5. 25. 50 250, 500 ,
2500. A.C. Volts, 10. 50, 100, 500,

1000 D.C. Current, ${ }_{60} 50 \mathrm{KA}, 600 \mathrm{~K}$, 250 mA Resistance, Ren,
$\$ 10.50$ Post, soc.
ALL PRICES NET. INC. S.-TAX.
KAMODEN HT 100B
MEASUREMENT
RANGES

1. D.C. VOLTAGE

Sensitivity:
$100,000 \mathrm{ohm} /$ volt.
$500 \mathrm{~mA} 2.5 \mathrm{~V}, 10 \mathrm{~V}$. 50 V . 250 V ,
A.C. VOLTAGE

- A.C.

12,500 ohm/volt
12,500 ohm/rolt.
VOLUME LEVELS 250V. 1000V.
DECIBELS
20 plus or minus 62 db in 5 ranges. . RESISTANCE
$\begin{array}{lll}R \pm 1 & 0.20,000 & \text { ohm Centre Scale } \\ 160 \mathrm{ohm}\end{array}$ $\begin{array}{lll}R \times 10 \\ R & \times 100 \quad 0-200.000 & 0 h m \\ 0.2 & 1600 & \text { ohm }\end{array}$ $\begin{array}{lll}R \times 100 \quad 0-2 & \mathrm{Meg} \text {. ohm }\end{array}$
$R \times 1000 \quad \mathbf{0 . 2 0} \mathbf{M e g}$. ohm
D.C. AMPERE

10UA 250UA 2.5 mA 250 mA $\$ 28.73$
$\$ 28.75$
$($ Post
$\$ 1.25)$

MINIATURE P.A. AMPLIFIER. 15 WATTS OUTPUT.

Multi Match Ferguson O.P. trans. former input for crystal mike and | pick-up with electronic mixing. P.P. |
| :--- |
| EL.s4 output |
| 39.50 |

30 Watt. As above, ELi $34_{\$ 53.50}$

${ }_{60}$ P.P. \therefore As above EL34 $\mathbf{~} \mathbf{W} 79.50$ ${ }^{60}$ P.P Patt. As above ELi4 $\mathbf{S 9 8 . 5 0}$

LINE OR VOICE COIL
MULLARD HI-FI RANGE
5/10 with pre amp vase and trible

TRANSISTOR P.A. AMPLIFIER C.A.-512

12VDC Operation.
Output 20 watts.
Current consumption at max. output
Input. High imp, mic. Also
ndependent galn controls Output: Imp. 4.8-16 ohms. Frea. Resnonse:
Dimenslons: 2 in $x 61 / 4$ in $x 81 / 2 \mathrm{in}$. Complefe with Instruction book with circult. All dlugs. PRICE $\$ 57.50$
DYNAMIC
MICROPHONES

DMS-3 HI-Imp $\$ 5.5$

 DMi-Imp $\quad 600$ ohms or mounting .. \quad Dymic Cardoid. 50 ohms or HI-Imp. Sultahle stand mounting D.M. ${ }^{307}$ HI-Imp. CM-10 Crvstal HI-Imp. Sult DM-108 Cardoid M-202 Flexible \dot{T} stand $£ 5 / 17 /$ 3 Section Floor Stands ... £3/12/6 Post., N.S.W., 25c; Interstate, 35c

TACHOMETERS

Mullard ACE. Scaled for 5.7 or 9 K \&10/7/6-\$20.75 With Dwel! Angle,

ع11/17/6-\$23.75
OHNAR.
240 degree Clicular Movement. Scaled 6K or 8K. £12/7/6-\$24.75. Standard Scale, 6 or $8 K$.
Postage: N.S.W. 5/; Interstate 7/6.

INTER. COM. UN 2. Station Transistorised $\$ 11.50$ £5/15, 4 Station, Including Mast $\$ 20.25$ £10/2/

4 CHANNEL

 MICROPHONE MIXERPRE AMPLIFIEI \$7.75

REVERB. SPEAKERS

Automatic addition of reverberation to any existins ampllifer
£12/15/- $\$ 25.50$
CO-AXIAL SPEAKERS
C.S.-30. 12"
v.C. ${ }^{15}$ ohm. Cross over 3 3,000

£13/19/6 \$27.95

C.S-20. $8^{\prime \prime}$

 20,000 cycles.
£7/19/6 ${ }^{\text {Rated }}{ }^{8}$ Watts. $\$ 5.95$
HORN TWEETER CT-3
2,000-20.000 Response. Sensitivity 110 dbw .
Weieht $13 / 4 \mathrm{lb}$.
£4/9/6 \$8.95

STEREO RECORD

 CHANGERS
Model. 4-speed.

$\$ 21.50 \quad$ flose Fully machined and balanced Heavyweight turntable. Ceramic
$\$ 27.50$ £ $13 / 15 /-$
Post. N.S.W., $\$ 1.25$; Interstate $\mathbf{\$ 1 . 7 5}$

STEREOPHONIC HI-FI
HEADPHONES
With padded earopieces.
Frequency Response: 2517.000 cos v.c. Nominal Dower waiti 8 ohms each chanel.
$\$ 7.75$ £3/17/6
Post., 50c.

TV

SIGNAL-BOOSTER

210 V . operation. No change. T set. Simple connectlon. Extra zain
$\$ 9.75$ Post 50 c .

Post. 50
NEW WIDE
RANGE SPEAKE
15 ohm. Twin Cone. 8in
$121 n$
$5 i n$
$\sin \dot{T}$ wecter
4in Single Tweete
12in Heavy Duty 20 watt
NEW SPEAKER
$2 \ln , 15$ ohms
$23 / 4 \mathrm{in}, 15$ ohms
$31 / 4 \mathrm{ln}, 8$ ohms
$31 / 2 \ln , 15$ ohms
4 in. 15 ohms
$61 / 2 \ln , 15$ ohms
$7 \mathrm{in} \times 5 \ln , 15$ ohms
$6 \mathrm{in}, 3,8,15$ ohms
8 in,
12 in
12 in
Pus soc post.
PANEL METER!

$1 / 4 \ln 50^{\circ} \mathrm{UA}$
$\begin{array}{ll}21 / 4 \ln & 50 \\ 23 \ln & 50 \\ \text { UA }\end{array}$
21/4in V.U. Meters

$21 / 4 \ln 500 \mathrm{~V}$ D.C.
$31 / 2 \ln 500 \mathrm{~V}$ A.C.
$31 / 3500 \mathrm{~V}$ D.C. .
Post N.S.W. 25c. Interstate

NEW RECORDIN TAPE

3in Mylar LP 300ft sin Mylar LP 900 ft Sin Mylar DP 1200 ft $53 / 4 \ln$ Mylar LP 12000 ft 5in Fin Mylar DP 1800 ft 7in Mylar LP 1800 7in Mylar DP 2400 ft $\begin{aligned} & 101 / 2 i n \text { Mvlar } \\ & \text { Post } 26 \\ & 2600 f t \cdots \\ & \text { per spooi. }\end{aligned}$

PLAYMASTER 4

 STEREO AMPLIFIE Push-Pull. 8 Watt per Ch Bass and Treble boost and $\begin{array}{cc}\text { Wired and Tested. } \\ \& 38 / 10 /= & \$ 77.0\end{array}$ELECTRIC GUITA Pickup Units Accordion Pickud Units Harmonica Plekup Units
Post.. N.S.W. 40c; Interstate,

A BATTERY	
¢ CHARGER	
de Charge Postion suits all Batteries. $\mathbf{2 V}$ to 12 V at	

MULLARD MAGHAVOX

3OOKSHELF ENCLOSURE Maple, Teak or Walnut
Complete $\$ 26.00$
PER BOOKSHELF $\$ 40.50$ if: N.S.W. 50 c , Intersia.e $\$ 1.00$.

PLAYMASTER BOOKSHELF UNITS

$\$ 29.50 \quad \$ 33.50 \quad \$ 36.50$

t, Two Channel, with Twin 1, 4 Inputs, Bass and Treble 2 Twin
jpeakers .. $\$ 63.00$ \&31/10/ t, Four-Channel. Bass and Boost. Two one Speakers $\$ 76.25 \quad$ \&38/2/6

35 WATT

rel. Bass and Treble Boost. $\begin{array}{llll}\text { is } & \text { Cone } . . & \$ 109.05 & £ 54 / 16 / 6\end{array}$ with foot control and 2 prelirols for frequency and in models.

4 plus 14 WATT
2everberation.
Wait or
May
We
everb. Tro 9×6 Wooter
3. ${ }_{4}^{\text {Two }}{ }^{2}$ O $^{9}{ }^{6}{ }^{6}$ Twin-Cone Boost. Foot Vibrato control d.
163.50 £ $81 / 15 /-$
bass or bass gutrar - watt Ampilizer

Channels. Bass and Treble
Two 12in Radial Beam is. Perfect reproduction on
145.75 £72/17/6

PIGGY BACK

IITAR AMPLIFIER

t			\$79.75
tt	.		\$99.75
It	.- .		\$119.75
ts. , if	Bass and required,	$\begin{aligned} & \text { Treble } \\ & \$ 10.50 \end{aligned}$	Boost. extra.

REVERBERATION PRE-AMPLIFIER

2-Channel input. Fully transistorised. A.C. Powered.

Plugs into and matches any Guitar, rgan or P.A. Amplifier. £29/17/6 $\$ 59.75$

TAPE ECHO UNIT
Suits any Guitar amp. without any alteralion. JUST PLUG IN.
\$139.50

Feb. and March Elect. Aust. 106
wired and tested. $\$ 88.75$ 107
wired and
TESTED
$\$ 79.00$

V.T.V.M.
 MODEL TE-40 MILLIVOLTER

Spec. AC.V. Imv. - 300 Vrms. 10 inges. A ccuracy ${ }^{5}$ eps- 1.2 mec, pinsus lis. 20 cos.250 kc .i $\begin{array}{llll}\text { minus } & \text { O.2dB. } & \\ \text { dB. } & \text { Scale: } & \mathbf{4 0 - 3 0 - 2 0 - 1 0 . 0} & 10.20\end{array}$ $30.40,50 \mathrm{dBm} . \quad 240$ V.A.C.
$\$ 47.50$.
MODEL TE-65
V.T.V.M.
DC.V 0-1.5-5-15-50-150-500-1500 V. Rms. AC.V. 0-1.5-5-15-50-150-500-
1500 Rms. ${ }_{1500}^{1400-4000}$ Rms. $\mathbf{P} . \mathbf{P}$. 1.4
Resistance RX10.100, .1K, .10K, 100K, 1 M . .10 M . Decibel-10db minus-plus 65 dB . V.A.C.
$\$ 42.50$

WIDE BAND OSCILLOSCOPE

5 Meg. Bandwidth. Push-pull vertical and horizontal Amplificrs. 8 position, high sensitivity vertical Amplifier, Frequency Compensated on all positions. Calibrated .02 to 600 volt. Hard-time base, 20 cycles to 75 K . Latest American R.C.A. circuitry. Complete with probe.

3-inch \$99.75; 5-inch \$111.50

T.O. 2 TV portable service unit $2^{\prime \prime}$ oscilloscope $\$ 5950$. C.R.O. DOUBLE BEAM SWITCHING UNITS \$39.75

T.E. 46

RESISTANCECAPACITANCE

Bridee and Analyser.
Capacity ${ }^{20}$ pid to 2,000 m?d. Resistance 2 ohm to 200 meas. Also tects power, factor, leakase, impedance. transformer ratio, insu. lation resistance 600 tn 200 mers. at

Indications by eye and meter.
\$47.75

LEADER

SWEEP \& MARKER GENERATOR SMG 532
TV and F.M. 2 to 270 Mess. 5.5 Mes. Crystal
width to
12
$\$ 170.00$
Post., N.S.W, \$1.50; Interstate, $\mathbf{\$ 2 . 5 0}$

SIGNAL GENERATOR

Deluxe Mocel TE 20D.
Freq. range $120 \mathrm{KC}-500 \mathrm{Mcs}$. ${ }^{\text {Band }}$ Bands. Accuracy ${ }^{2}$ per pent. Suitahle \%or provicon for Xtal. scenerator. Proplited cirruit. 240 V.A.C
$\$ 27.50$
Post.. N.S.W. S75c; Interstate $\$ 1.25$.

VALVE TESTER
Tests all valves. diodes, rectifiers. checking filaments, shorts. Merit on direct reading. Good-bad meter $\$ 26.75$
Post, N.S.W. 25c; Interstate \$1.25.

> T.E. 50.-99-5011

Checks. Nu Vistas. Compactrons,
$\$ 34.25$
G.D.O.

UNITS
Leader. 810. 6-Band. 2 Mrg to 260 Meg Nuvistorised, 2.40 V.A.C. Operation. Modulated. Callibratlon. $\$ 41.50$
T.E. 18 Lafayette. 8 Bands. 360 K.C. to 260 Megs. 240 V.AC. operation
$\$ 39.50$
Post, N.S.W., 50c; Interstate, 75c. T.E. ${ }^{15}$. Transistorised. 7 . ${ }^{2}$ Band, $360^{\circ} \mathrm{Kc}$ to 270 Megs.
\$34:75

AUDIO GENERATOR

DeLuxe Model TE-22D.
Freq. range. Sine $20 \mathrm{cps}-200 \mathrm{KC}$. SQ. 20 cps- 25 KC . ${ }^{2}$ Output voltage. Sine 7 V . SQ. TV P.P. Output impedance 1000 ohms. Acc. 5 per cent. Distortion less than 2 per cent. 4 . range attenuation.
1/1. $1 / 10,1 / 100,1 / 1 \mathrm{~K} . \quad$ Printed 240 V.A.C.
$\$ 41: 50$
Post. N.S.W $\$ 1.00 ;$ Interstate $\$ 1.50$

PLAYM.ASTER

115
The new solid state Stereo-Amplifier. April Issue.
Wired and Tested \$104.00
Kit Set \$90.00
Pre-amp fo suit
magnetic cartridge

EVENINGS and WEEKENDS: "KALUA," Hilma Street, Collaroy Plateau, XW5 DULWICH HILL, EARLWOOD, BUS STOPS AT DOOR, STOP No. 42

HOME LIGHT BATTERY CLYDE OR DUNLOP ${ }^{19}$ Dry Piate. ${ }^{\text {Charged. }}{ }^{150}{ }^{\text {Amp }}$ Celis.,	CHASSIS PUNCHES SIZES $\$$ Reamer and Carry Box. $\$ 5.75$ £2/17/6 Post 50c. Interstate $\$ \mathbf{\$ 1 . 0 0}$.	TYPE F FIELD TELEPHONE $\$ 8.95$ ea.	SCOUT MAGNE COMPASS 39c ea $\$ 2.50$ do Post 10c. Post 5
\$3.25 £1/12/6 each	NEW POWER	$\begin{array}{lllllll}\mathbf{5} & \mathbf{O h m} & . & . & . & . & . \\ \mathbf{\$ 2} 2.25 \\ \mathbf{O h m} & \because & \because & . & \because & . & \mathbf{\$ 2 . 2 5}\end{array}$	COMMUNICATIC
AC. DC. MOTORS 32 V and 110 V Speed, Series Wound $1 / 8$ h.p. motors,	TRANSFORMERS		
$\begin{array}{cc} \$ 3.75 \quad £ 1 / 17 / 6 \\ \text { Post N.S.w. 3sc. Interstate } \\ \hline \end{array}$		NEW ROTARY CONVERTERS	J.R. 200 KITSE As described In Trade Revie issue.
NEW VALVES	(e)	60 Watt, 50 Cycle. 24 v to 32 v input.	$\$ 89.00$ d, Tested and Guars
	220 V Doubler 600MA .. 514.70	Output can be suppiled for $50-110$ or 240 v .	\$99.00
(1)	3" SELSYN MOTORS	It radosrrams. TV, Tape	Other models-See Ausust J.R. 60
	TRANSMITTERS	econders, Fluorescent Lishts.	J.R. 60 alves. 5 Bands.
	$\stackrel{50 \mathrm{VAC}-500 \mathrm{cps} .}{ }$	\$39.75 £19/17/6	50 KC to 32 Meg
${ }_{1 H 5}^{145}$	$\underset{\text { Post }}{\$ 5.75 \mathrm{fc} \text {, }} \underset{\text { Intersiate }}{£ 2 / 17 / 6}$	$\$ 73.75 \quad £ 36 / 17 / 6$	\$215
${ }_{116} 11 .$.			R
		TRANSISTORS	Ondition
		2N174 5.00	
			Converted for 240 V AC On
		Hlech-powered units for is.watt	\$75.75
${ }_{686}^{6457} \ldots . .$.			T
	2000 ohms, \$1.25		
6BF6 6 C88			erial Coupling 4
${ }_{6666}^{\text {6F6 }}$	Lapel Crystal Mikes .. \$1.25		
			3BZ RECEIVER
		\$9.75	AIR TESTED. PERFECT 0
	100UA Stereo Bal Meters	Post N.S.W. 7/6. Interstate 15/.	
	D	NEW G.M	al communications Recel
6SA7 Metal $\begin{array}{cccccc}\text { 75c } \\ \text { 6SC7 }\end{array}$	CONDENSERS	P. 240 V.A.C. Motors.	$\$ 55.00 \quad £ 27 / 10$
	. 5 mfd 600 l		AR7 RECEIVER
6SSN7	2mfd 600 V		
			b
	1 mfd 300 v		\$105.00
		NEW FAN MOTORS	3BZ TRANSMITT
		2-speed. ${ }^{1500-3000 .}$	\$5500
12A6	(mfd ${ }^{\text {and }}$	IDEAL FOR TAPE RECORDERS	\$55.00
			RANSCEIV1
	$\mathbf{2}$ mfd. 200vv.		ces.
	med. 1500\%...		\$25.75 E12/17
		RANSFOR	22 TRANSMITT
		Volts 190	lete with Valves
	$6^{\prime \prime}$ INDICATOR UNITS	d. 50 PH.	\$13.50 £6/15,
	O TUBE	\$55.	
			\$11.50 $55 / 15$,
	\$13.75		
6AJS .. $\because .$.			
6ALS $\ldots .$.	NEW C.R.O. TUBES	D.C. MOTORS	war verston of H.
6ANS .. 51.2580715175	S2.75	M.	${ }_{\text {band }} 1.6$ too 26 mers
GENEMOTORS		$\underset{\text { Post 10c. }}{\mathbf{3 9 c} \text { ea. }} \mathbf{\$ 3 . 5 0} \underset{\text { Post soc. }}{ }$	\$90.00 £45/-
${ }_{12 \mathrm{~V}}^{12 \mathrm{~V}} 5000 \mathrm{~V}$	BEN	NEW ELECTRO-	
	FREQUENCY METERS		
2			
	\$110.00	ETER \$49.00	arabarabay

MSWERS TO GORRESPONDENIT

len writing to us:-

- Please give you name and full postal address including the State.
- Write the above information clearly or, for preference, print it in block letters. Your co-operation will facilitate delivery of replies by mail, where such are called for.

O RECEIVER: Would it be possible to develop a receiver to cover the S band used by spacecraft in the project? There are hundreds, perpusands, interested in tracking satel1 space probes using these frequen2100 to 2300 MHz . (P.G., Brisbane,
modestly observe this is a pretty er, but we wonder whether you 1st how tall it is. It is a very different ion from the "Fremodynes" and onverters, to say nothing of the problems involved. Right at the the chances of us doing much are slight.

HURTS! Leaders in intelligent in the U.S. have announced quite lat they have no intention of changHertz from cps. I have been aswith the game for a long time and y present interests are restricted to nd SSB I also have an interest g people. The change to Hertz is of a rebellion by the so-called inIs who have done damage to the art, etc. Mini skirts, junk art, the wn in moral values are all part of l., Leederville, Tas.).
:atements like those ought to qualify e kind of a prize. We would have the technical men behind the U.S. Bureau of Standards, behind highly journals and learned societies and electronically involved corporations nably intelligent people. Nor can uite as intimate a connection as you Hertz and loose morals. Presumably must really have started way back her men's names began to be alloelectrical quantities. You're allowed ike the term and to avoid its use; e to it might conceivably reverse g to its adoption - but we ceron't go along with your line of g.

IG 78RPM RECORDS: What potentiometer is used in the "Basic mplifier" for tone and volume conit all right to play mono discs stereo pickup? By the way, any iterested in playing 78 rpm records bbtain the book "Mullard Circuits udio Amplifiers." (P. C., Taral)
'ou for the suggestion about the .C. The potentiometers used for and tone controls in amplifiers are ogarithmic. However, for a project 3asic" type, any available pot could at least for the tone conrol without letriment to the performance. The If playing mono records with stereo was discussed in "Know Your rone, Part 6" in our January. 1967, this article explains at some length, Its depend on the type of stylus , in general, there is no objection actice.

MPEDANCE, etc. What is meant ree follower having a gain of 0.9 ? ive trouble in understanding impeatching and think that these would le subjects for the "Answer Man."

I enjoy reading the magazine and am fascinated to see how it has changed. Twenty years ago it was written in a more personal light-hearted way, although "Let's Buy An Argument" for August 1961 rates as just about the funniest article ever presented in The journal. (F.A., Caulfield, Vic).
Thanks for your kind comments, F.A., we certainly appreciate readers letting us know how they feel about the magazine. Quite deliberately, we have had to modify our "Let's have fun-hobby" approach, but electronics has come of age since the early days of "Radio and Hobbies." We must be somewhat more professional in our approach, to keep in line with the tone of the industry. Yes, we will certainly pass your questions to the "Answer Man," as these are problems common to many.

HEATER VOLTAGE: The heater voltage from a particular power transformer in my possession measures 7.8 volts with a load current of 0.3 amp . and the valves in the small set which it supplies have been lasting only a few months. I understand that heater voltage should be within about 10 per cent of the rated value. By the way, the cost of electronic components, with tax, is far too high. (G. D. Glennoy, Vic.)
It is possible that the transformer you have is a faulty one but. before criticising the manufacturer too roundly, it may be wise to consider certain relevant points. Firstly, is the heater winding, and the whole transformer for that matter, being used at somewhere near its rated load? If it is very lightly loaded, the voltage will be higher than at its proper rated current. Again, it may be necessary to consider the normal mains voltage in your area and note whether
you are using the appropriate primary tapping. And what of your multimeter? It could easily be several per cent out, especially on the low AC volts range. In short, are the figures quoted to be accepted as proof of the manufacturer's negligence or are they the result of a number of small inaccuracies adding up to present an alarming result? In car radio service, valves may be called upon to operate intermittently at up to 7.5 volts or 15 volts respectively for 6 and 12 -volt systems but the valves fortunately seem to cope reasonably well with the situation. Your figure of 7.8 volts is higher than this again but. even so, the rate at which you are going through valves seems rather startling. The fact that a couple of these were of indeterminate age and origin might suggest possible failure for other reasons. However, we could not support the idea of running valves unnecessarily at such a high heater voltage and if, in fact, you can verify your figures. it would seem desirable either to take the matter up with the manufacturers or to insert a series resistor in the heater circuit. Yes, the cost of components is high and nobody is more concerned about this than we are. Unfortunately, there is no easy answer to this. If the Government has to extract a certain amount of revenue to carry on, and the work force as a whole is determined to maintain a certain standard of living, the tax and labour content of components is inevitably going to be substantial. The situation is not peculiar to Australia, though it is aggravated by our relatively limited market potential.

DEAD LETTERS: A letter addressed to Mr Trimarchi Francesco, Hendon, S.A.the only address given - has been returned by the postal authorities marked "not known." Will the writer please supply a more detailed address so that his letter and issue may be delivered. We are holding a letter from Mr S. Gilchrist, who gives his address as 68 Eldorado Street, T. Hill. Since we can find no reference to such a post-office in any Australian-State we suggest Mr Gilchrist write again giving a more complete address.

"ELECTRONICS Australia" Information Service

[^8]SOUND PROJECTORS Clinevox Prefect 16 mmn In good plete with speiker and anplifier £57-10-0 $\$ 115.00$

CIRCULAR SLIDE RULE

33/n dimmeter. Will do the silde rule. Insirnctlon book Iuchuted i2/6 $\$ 1.25$ each

REFLECTOR

 GUNSIGHTContalns these lenses
1 I.ens 1 In Focus, 11/2lı dam. 1 I.ens $111 / 1611$ Focus, $11 / 411$
1 Alameter. Ar-spaced Lens, $11 / 4 \mathrm{In}$ dam. 1 Filter Lens, 1 Graticule, 1 1.mupholder.

18/6 \$1.85
l'ost: N.S.W., 30c: Interstate, 40c.

P.M.G. TYPE

TELEPHONES
Standard desk type with manneto calliny device. Rause 30 milles. Uses st:andard hatterles at each1
phone. Any munler can be con-
 £ $11-10-0$ ($\$ 23.00$
(2 TELEPHONE SETS)
30 c cartalke to rall. Frelght paywhle itt nearest sittended rullway

AERIAL CAMERAS

F. 24 Mark IV 2.9 Leng, stops 11 ,

 1.enses complete with woiden cisse.
£19-10-0 $\$ 39.00$
Soc cirtage to Rall. Frelelhe pay. nillo it nearest stitenended rillwny

SHIPS' CLOCKS

(No bill). Silluts 8 .dany, fully levelled. orkiluml
 Thomults splashli-proofed bakellte £15 \$30
Post N.S.w., 70ci Interstate, 9sc.
MINIATURE
ELECTRIC MOTORS
$11 / 2$ to 3 volis DC, ideal for model luars. cris. plines, etc. Strous
torruie.

> 39 cents each (Post $7 c)$

TELEPHONE WIRE

 21 E:inke copper, plustle corered. Itceni telephine or IIlle). st.00 per con.
3000 TYPE RELAYS
P.M.G. 200 Ohm - 1,500 Ohm

Coils, 51.25 each.
AWA OSCILLOSCOPE
Calllurated with delay tliuo base.

£97-10-0 \$195.00

AMPLIFIER

£3-10-0 ${ }^{\$ 7.00}$ Post 50c
GOOSE NECK LAMP
NEW. IDEAI, FOR DESK or WEORK BENCH. Adjustable ahade, strong metal laccuered hame and frame. Helght 18 In . Complete with lend.

12/6 \$1.25
Post anul packlug, s1.00.
HAND BEARING COMPASS
Brand ncw in wooden carryling cise, complete with batteries.
£17/10/- \$35.00
Post, N.s.w. 70c; Interstate, 95c.

P.M.G. Phone Jack and plugs, 25e cach, 45c the palr.

NIFE CELLS
 1.2 Volt fuly charued, $4 \ln \times 3 \ln$

 $x 11114$ AH.10% - $\$ 1.00$ each Poct. N.S.W. $\mathbf{1 . 2} \mathbf{2 5 c}$ Interstate, $\mathbf{3 5}$. 1.2 volts $\left.15 \mathrm{AH}, \sin \times 4 \ln \begin{array}{l}x \\ \$ 2.95 \\ 25\end{array}\right)$
 Post, N.S.W., 30c; Interstate, 40 c .
PERSPEX

Shelitly domed ahape, $16 \mathrm{in} x$ $12 \ln , 51.35$. $2 \mathrm{ft} 6 \mathrm{ln}_{\mathrm{x}} 18 \mathrm{ln} \mathrm{tap}$ erlng to 6 ln, $\$ 21.75$. $2 \mathrm{ft} 6 \ln ^{2} 22 \mathrm{ft}$, $6111 \times 2 \mathrm{ft}, \$ 5.50$. Frelght payable
50 c cartage to rall. at nearest attended rallway atation.

P.M.G. TYPE KEY SWITCHES.
P.M.G. 45 c orch. Poat, 15 c .

60 magniflcation with a 60 mm conted objectiva lens.
£11-10 \$23.00
Postage, As Illuatrated.
$\$ 1.20$.

HIGH STABILITY RESISTORS

I.R.C. brand now $1 / 2 \mathrm{~m} ., 1 \mathrm{~m}, 2 \mathrm{~m}$, tolerances between 1 and not ex-
ceeding 5% including 100,360 , ceeding 5% includins ${ }_{560} 100,{ }^{360}$, $180 \mathrm{~K} 220 \mathrm{~K}, \quad 860 \mathrm{~K}, 820 \mathrm{~K} ;$ ohme, Usuai price 40 C each, 50 assorted different values for obly

$37 / 6 \$ 3.75$

Post 15 cents

GENUINE VARIACS

$0-115$ V.A.C. 18 Amps, $\$ 29$ erch, or couple 2 iogether for 240 v .A.C.

The two for $\$ 45$
Genuine American
Zenith Variacs
0.115 V.A.C. 7.5 Amps, $\$ 19.50$ ench or couple two tozether for 240 V.A.C.

The two for $\$ 36$.
Soc cartage to rall. Frolght pay. ab: at neareat attended rallway

522 TRANSCEIVERS

£ $17^{100}-10^{\text {to }} 0^{150} \$ 35.00$
KLYYSTRON MIXER/DUPLEX units, 9375 megs, complete with crystals, N.S.W., 45 c ; interstate, 50 s .

FRACTIONAL 240 V AC MOTOR
$1 / 25$ h.p., new, with coupled 2 . apeed gearbox. 1425 and 300 r.p.m. Ideal for rumbler, ete. £10-0-0 \$20.00
Poat N.S.W., 70ci Interstate, 95 c .

SWITCH BOARD FRAMES

 Steel ex-P.M.G. Height 45in x $27 \ln x 34 \ln$ will make ideal test bench. $£ 5-\$ 10$.Frelght payable at nearest attended
rallway statlon.

VALVES
BRAND NEW
IN CARTONS. Specinl discount for quanity $807 \quad \$ 1.75$ 6AGS 50c 6SN7GT 95 c 12AU7 $\quad \$ 1.00$ $\begin{array}{llll}89 & \$ 1.00 & \text { X } 61 \mathrm{M} & \$ 2.20 \\ 12 \mathrm{SA7} & \$ 1.25 & \text { CVE50 } & \$ 1.50\end{array}$ $\begin{array}{lccr}6 \mathrm{H} 6 & 45 \mathrm{c} & 1 \mathrm{H} 6 \mathrm{G} & 30 \mathrm{c} \\ 41 & \$ 1.25 & 832 & 53.00\end{array}$ $\begin{array}{lclc}5 \mathrm{U} 4 \mathrm{G} & 95 \mathrm{c} & 832 & \mathbf{8 5 . 0 0} \\ 77 & 11.00 & 6 \mathrm{~F} 13 & 75 \mathrm{c}\end{array}$ VR150.30 51.00 6AKS $\$ 1.50$ \}

	31.00	$6 X 4$	$\$ 1.00$
$5 C P I$	$\$ 3195$	$6 F 8$	75 c
EF50	35 c	6 N 7	$\$ 1.00$

$6 \mathrm{U7} \quad 75 \mathrm{c}$ 125K7 50 c

V1103 $\$ 1.00$ VR1120
$\begin{array}{llll}\text { VII120 } & 78 \mathrm{c} & \text { VR118 } & 75 \mathrm{c}\}\end{array}$
$\begin{array}{llll}I L 4 & \$ 1.00 & \text { VR6S } & 25 \mathrm{c} \\ 5 \mathrm{Y} 3 & \$ 1.50 & \text { VTAC } & 75 \mathrm{c}\end{array}$
$\begin{array}{lccc}6 \mathrm{C} 4 & 50 \mathrm{C} & \text { AUS } & \$ 1.00 \\ \text { CV2184 } & 32.25 & 0 & \$ 1.25\end{array}$
$2 \times 2 \quad 75 \mathrm{c}$ 6AKSW $\$ 1.50$
PLEASE ADD POSTAGE ON ALL ARTICLES. (no

ELECTRONIC K

With solar cell can exp with 20 different clrcuits, in wireless, microphone, morse transistor radio, audlo fre amplifier, telegraph, tran: intercom., signal tracer, etc tools, no soldering. Ea assemble. Assembly man cluded.
$\$ 19.95$
Post N.S.W. 45c, interstal
MINE DETECTOI Ex A.M.F. No. 2 Mk. Instruction Book. Comp wooden case, $\$ 39.00$. Freig able at nearest attended station.
4 DIGIT RELAY COUN
$\mathbf{3 0}$-volt D.C., suit slot ca \$1.25. 12/6 esch.
1.25 Post 13 c . ${ }^{12 / 6}$

RECORDING TAPI
SCOTCH BRAND.
EX-WOOMERA.
SIIGHTLX USED.
Ideal for professional q audio recordlng.
1200ft gin reel $1 / 4 \operatorname{In} \$ 2.75$. $600 \mathrm{ft} \sin$ reel $1 / 4 \ln \$ 1.68$.
$200 \mathrm{ft} 3 \ln$ reel $1 / 4 \ln 65 \mathrm{E}$.
CRYSTAL CALIBRA With 500 kc crystal up to 3 used, good condition

ALTEC STUDIC MICROPHONES 639B Western Electrle, top original cost \$250, Ideal cast Studio, music re Church and play recordin \&45, $\$ 90$.

SCOOP PURCHA: Gramo. Motors New. ${ }^{\text {End }}$ 50 cyc . 0 nily $32.75{ }^{240} \mathrm{cch}$ Post, N.S.W., $\mathbf{3 0 c 1}$ Interita

240-110 VOLT 61 TRANSFORMER

Encased, Includins witcl

 new, $\$ 50$, $\boldsymbol{\& 2 5}$.Sl'ECIAL lucky dip valve 15 new valves in eart亚 $\$ 2.00$. We haven't beneflt. Post, 30c.

SOLENOIDS

l'lunger Type 12V 300M. lectric caniera control, n \$1.25.
200 Mill. sump. 10 c . push movement.
\$1.25. Post, 10c.

BATTERY CHARG

6 or 12 -volt, $213 \mathrm{nmp},{ }^{n}$
meter, $\$ 10.50, \propto 5 / 5$
$21 / 2 \operatorname{nip}_{12,}$ wim meter
l'ost. N.S.W., 70cs Intersta
TELEPHONES
Sound Powered. Can be Microphone and Recelva With 50 ft cable.
Post, 25 ci Interitate,

CARPHONES

 A.W.A. or S.T.C. Two-way radlo. $75-80$ megs 12 -volt operated. $£ 22 / 10$ each.EX ARMY TELESC 4 x 40 Handley. $\$ 6.50$.
7×40 Otway angle te attended rallway patatlon.

Deitch Bros
70 OXFORD STREET, SYDNI

IERS TO CORRESPONDENTS - continued

TRIC GUITAR AMPLIFIERS: Do using the demonstrator in a similar e available circuit data, etc., for a "solid state" guitar amplifier with tional facility of a dynamic microput? (J. McQ., Cringila, N.S.W.).
have not described such an ampliyet, although we certainly intend a look at the proposition as soon re clear of the valve type circuits we would be very surprised if the r designs did not turn out to be a 11 more expensive.

AN CONSTRUCTOR. I have been radio construction since 1912, and n the Signals in the first War. I ilt many receivers since. I have New Zealand since retiring 15 years 1 have every type of test equipmy workshop. I have had a lot of with VHF receivers and would like ct R.B. of Auckland, who wrote in ch issue of his experiences with reand anyone else with similar inE. M. Carpenter, 27 Towai Street, iers, Auckland 5, New Zealand. tuckland 587284).
always glad to hear from such its and leave it to R.B. and others the necessary contact.
:ATION SUGGESTIONS. Would it ,le to print the common wire gauges ir dimensions in inches and centiAlso, will you publish a two-trane recorder to record tapes at school -back at home later? I am also d in the history of radio, etc., and if you could publish a general n this. (A.Y., Sunshine, Melbourne,
are interesting suggestions, A.Y., e will consider. The wire data can d in many reference works, but publish tables at some future date. istory can also be read in ooks, but it could take too much d occupy too much space to be ed at present. The portable tape reounds fine, but it would be difficult mpossible to obtain the mechanical n any case, it is possible to buy ecorders which would probably be lough for the purpose you have in

R AMPLIFIER. Would it be to publish a guitar amplifier of O to 25 watts with a vibrato or using low cost parts for the younger (P.G., Kogarah, N.S.W.).
lished a guitar amplifier in October, er, and December, 1962, and in 1963, which meets your performeecifications, P.G., but it may be core costly than you are hoping for. possible to get something for noths., and if you want a good output tras, you must be prepared to pay

PROBLEM: I would like to suggest ir problem which could be solved \geq recently-described Digital Demon-- the old teaser about the farmer ;oose, a fox and a bag of corn, who oss a river in a boat capable of only himself and one of these withving alone either the fox and the or the goose and the corn. Using symbols and a Karnaugh map one 1 a minimal expression of the "discombinations of the "variables," one can set up the NOR gates of onstrator to detect these as repreby the four flip-flops (one flip-flop Iting each variable as "this side" or ide"). Push buttons can then be find a sequence of operations which ake the flip-flop from "All this side" that side" without passing through the "disastrous" combinations. There ibably many puzzles like this one zould be solved quite dramatically
ion. (P.G., Bondi Junction, N.S.W.)
Many thanks for the letter, P.G., and we agree that one can certainly use the demonstrator in this fashion. However we imagine that in most cases one would really need somewhat more hardware than is provided by the basic demonstrator: even in the problem which you mention. this would be true if the demonstrator were to be used to actually find the answet rather than simply provide a convenient means of checking a sequence already worked out on paper. Unless the additional hardware were added. the Karnaugh map alone would probably be of almost as much value as the demonstrator. Still, we're happy the unit is providing food for thought!

METRONOME...PLUS! I have been a keen reader of your magazine since 1947 , have built many projects and enjoyed the many theoretical articles. It has been pleasing to watch the magazine grow in size and sophistication. keeping up with changes in the industry. Referring in particular to electronic metronomes and the one with accented beat, would you consider the idea of (1) a metronome feeding a pulse of light to all music stands in a band, the tempo being under control of the conductor and (2) developing from the metronome an electronic percussion generator, such as is used sometimes with electronic organs? (M.W., Blackburn, Vic.).

Thank you for your very kind and encouraging remarks. We would have serious doubts about the idea of an electronic metronome to control a complete group. Electrically it should not present any insuperable problems but musically it might. If heeded, it would probably result in an unduly "mechanical" beat: if not heeded. it would lead to chaos. We've already had a look at the second idea, with a tentative hook-up between the accented metronome and our earlier white noise generator. Our impression was that an elementary hook-up was not worthwhile and that a lot of extra circuitry would have to he added to control envelope shape and frequency content. In short, it looked like involving a major effort, not iust something that could be strung together from a few bits. We are still very interested in the whole idea, however.

RADIO CONTROL: What is the size of the printed wiring board for the "radio control" transmitter featured in the December, 1965 issue of the magazine? (J.H., Daylesford, Vic.)
The size of the board was $2-1 / 8 \times 5-1 / 8$ inches. It was available at the time from Silvertone Electronics of 727 Prince's Highway, Tempe, N.S.W.

CAR RADIO: I have a car radio which is unsuitable for my car because of the wrong polarity. Heaters and plates run directly from the car battery. Do you have a power supply design which could run this set from the power mains? (K.C., New Lambton Heights, N.S.W.).
Most car radios have provision for changing polarity to suit the car and, before you write this one off on this account, seek the advice of someone in your area who specialises in this type of receiver. On the other hand, it may be that the set is one of the very limited breed in which the plate circuits operated at 12 volts and that the polarity is not easy to change on this account. Still ask, however! No, we don't have any power supplies designed to operate car radios from the mains. We couldn't undertake to work one out especially for you. Whatever the type of receiver, the best way to tackle such a proposition is to separate out the heater and high tension circuits, with a view to operating the heaters from an AC heater winding of suitable voltage on a power transformer. This
greatly simplifies the problem of providing filtered DC for the plates and screens, whether this needs to be a modest 12 volts or the more usual 200 odd volts. In thinking of measures along these lines you had best be sure that the whole effort will be worthwhile. Spend too much and you will find yourself wishing that you had put the money towards a new or second-hand set of more suitable design.
TRAIN CONTROL-PLUS! Why not produce an article combining the ideas used in the model train controllers of April 1960 (which permitted individual control of several trains on the one track) and of March, 1967 (which included simulated inertia)? This would just about make the model train enthusiast's dreams come true and would nicely round out the series of articles on controllers. (K. L., Rosanna, Vic.)
It may be possible to combine these two projects in the manner you suggest K.L., but our impression is that it would result in a very complex set-up and one which would require a jot of equipment to be packed into the rolling stock. There is also the problem that the April 1960 design does not lend itself to simple reverse facilities, a limitation which is unacceptable to many enthusiasts and which is quite difficult to overcome. Nevertheless, we will keep the idea in mind in the hope that we may find a solution to these problems.

CALLING ALL PROSPECTIVE AMATEURS

The Wireless Institute of Australia was established in 1922 to further the interest of Amateur Radio. With over 45 years experience, who could be more experienced in the teaching of this subject?
We are a non-profit making Organisation. Correspondence Courses are available at any time. Personal Classes commence in February of each year.
For further information write to: THE COURSE SUPERVISOR, W.I.A., 14 Atchison Street, CROWS NEST, N.S.W.

SERVICE

BILL TURNBULL offers you service on Hi Fidelity equipment Tape Recorders, Communication Receivers and Electronic Test Equipment.

25 years experience All work guaranteed

BILL TURNBULL
II ELLALONG ROAD, CREMORNE, N.S.W. 904825

A SPLIT SECOND IN ETERNITY

THE ANCIENTS CALLED IT COSMIC CONSCIOUSNESS

MUST man die to release his inner consciousness? Can we experience momentary flights of the soul-that is, become one with the universe and receive an influx of great understanding.

The shackles of the body-its earthly limita-tions-can be thrown off and man's mind can be attuned to the Infinite Wisdom for a flash of a second. During this brief interval intuitive knowledge, great inspiration and a new vision of our life's mission are had. Some call this great experience a psychic phenomenon. But the ancients knew it and taught it as Cosmic Con-sciousness-the merging of man's mind with the Universal Intelligence.

LET THIS FREE BOOK EXPLAIN

This is not a religious doctrine, but the application of simple, natural laws, which give man an insight into the great Cosmic plan. They make possible a source of great joy, strength and a regeneration of man's personal powers. Write to the Rosicrucians, an age-old brotherhood of understanding, for a tree copy of the book "The Mastery of Life." It will tell you how, in the privacy of your own home, you may indulge in these mysteries of life known to the ancients. Address: Scribe P.D.M.

Ehe Rosicrucians

(AMORC)

Box 2451, G.P.O., MELBOURNE, AUSTRALIA

Scribe P.D.M.
The Rosicrucian Order (AMORC)
| Box 2451, G.P.O., MELBOURNE, AUSTRALIA
I Please send copy of sealed booklet, "The Mastery
of Life," which I shall read as directed.
I NAME ...
I
ADDRESS....... ...

ANSWERS TO
CORRESPONDENTS-Co
SPECIAL DESIGN. I am very plea the results which I have obtained single transistor reflex receiver pub June, 1963. Would you design a amplifier for me using two trans which I have on hand. I would pleased to pay for this service. (J Dalyston, Vic.)
We are pleased that you have been cessful with the simple receiver, but not help you with your design since our staff is fully occupied in of producing the magazine and cop the relevant services which are offered. To set up a section to cc the "special" problems of individua) would be an involved and costly o even assuming that it was practic the present shortage of technical p having the necessarily wide bac The charges would probably havi quite steep to make such a servic even.
2-WAY RADIO. With reference t Tyrer's article on the new 30 KHz se for VHF mobile stations (June 1 would say "Amen"-particularly paragraphs concerning loss of s noise ratio in FM equipment. (S. I land, N.S.W.)
There have been a lot of argumen this subject but there seems little do narrowing the bandwidth is making harder to justify claims for superiol mance from FM. In fact, it is no question of narrowing the gap them. The advantage is likely to degree or disappear altogether, dt on the kind of noise involved and $t t$ strength in the relevant receiving are:

DISCARDED PARTS. Could you some addresses of people who m surplus radio parts in their junk bos they would be willing to give away. like to take up the hobby of buildin but I feel that it would be too exper me if I have to buy all new parts arrange to pick up any parts t offered. (J. W. B., Liverpool, N.S.W.) Unfortunately, we cannot allow the: to develop into a free exchange n readers, much as we sympathise wi needs and problems. For one th simply cannot afford the space for service, since it would be a case of -all in!" For another, there is a v risk that such a service could be seiz as a form of free advertising-offerin thing free as a means of establishir mercial contacts with readers.

FREMODYNE FOUR: I would enlarged circuit diagram of the Fre Four, instructions, price of a 1 where to buy it. (G. L., Brisbane, A copy of the complete article is a for 20 c , but we cannot supply a larged"' circuit. For details of kits etc. you will have to consult our isers.

READER BUILT IT

(Continued from page 89)
Editorial note: If a speaker of impedance than 150 ohms is user transformer matching, it would t desirable to fit an emitter resis TR4 to prevent thermal runawas would be even more desirable w than with 6 V operation. A resis 47 ohms should be satisfactory, by with a high value, low voltage ' lytic capacitor. The bias resistc need to be altered in value to the operating current, but this । necessary in any case, if trans coupling is used in place of : impedance speaker.

CLASSIFIED
 ADVERTISING

Idvertisements in these columns cost $\$ 0.60$ per Hine. Each line contains the equivalent of five words each of line letters. Minimum size of advertisements is two lines. Please note PAYMENT MUST ACCOMPANY ILL ADVERTISEMENTS EXCEPT THOSE PLACED BY ACCREDITED AGENCIES. Your advertisenent for the August issue must reach our office before July 5th. Address your advertisements to the Adverising Manager, ELECTRONICS Australia. Box 2728, G.P.O., Sydney.

OR SALE	R	READER SERVICE
Mon of your own speakers (Marneyox dealer). Complete unit, also avall s27.25. tor. R. R. Wheeler, 8.10 Frederick street:		
BUILT TRANSFORMERS, Power, Audlo, ngle or quantliy production. Amplifiers. transistor radics. general engineering, fitturning, sheet metal work. etc. Parkin-w Beenielgh' 33.		POSITIONS VA
	TRANSISTOR SHORT-WAVE RECEIVER. FOUT age: ${ }^{2}$ litset form 513.95 . Wlred and tested S14.95. KITSETS AUST., BOX 176, P.O. DEE WHY, N.S.W.	ELECTRONIC TECHNICIANS. tion and malntennine an aire required for opera- Desire to travel essential-both in Australla and GIllowanness paid RESOURES DEVELOPMENT Phone: Sydney $529-733$-7-8, N.S.W.
198 Hawken Drive, St Lucla, Bris-	TV PIcture Tubes- 141 ln to 24 in . Trade only. charge for scratchess s2. Extra if air in dua $\$ 3$ at 1120 Oxiley Rd Oxily. Brisbano. We buy \qquad	
		TELEVISION, TECHNICIANS FOR NEW ZEA laroest - TV Service Company, requlres too-arade TV techniclans for many of their 36 Branches throughout New Zealand
IONES, Phillps EV4304. Close packing 50 ohms. ${ }^{12}$ for $\$ 120$ or $\$ 14$ each. Cost Oaklelgh, Vic.		benefits. Wages SAll overtime after 5.30 per plus fringe to Friday and all day Saturday paid at penalty rates. No Sunday work.
FA. $6000 T$ World Wide, 6 -band 11 tranAM/FM portable Wecelver with mans		
	STUDIO MICROPHONES. Pearl (Swedish) 8CK ondenser mic. three patterns, fat 30-20KC. wlon. S120. RCA 44 BX velocity mic, excellent studios. $61-4908$.	${ }^{n}$ foll. further detalls. write in confidence. enclosing copy of references to TELEVISION INSTALLAATION AND SERVICE CO. LTO. Auckland, NEW ZEALAND.
		POSITIONS WANTED
	RECORDING TAPE. ${ }_{51 n}$ new. ${ }^{\text {boxed }}$, guaranteed. Write for free . Ist (linc. BASF). All Mall Order goods suplled. AIMO. Box 15. Footscray. VIc.	RADIO Mech. 39 . marrled. HF-VHF some TV accommodation bingo. N. W.
	MULTIMETER repalrs and sales; Fast service on and panel meters. Al polivir bratds of meters and rado and TV test equipment can be supplied. Mrade-ns accepted. Please write for ${ }^{2}$ datal cague. 29-2268, N.s.W.	TECHNICIAN, really qualifed, radio. television country rown. etnywhere in Oueensland exce? Brisbane. Blackshaw, 55 L2soon Street. Goond windl.
upon. These elements are a indioldua ions can be supplied. All enquirles Wel Uitrasonic Industries		
	CHRISTIAN BROADCASTING Assoclation needs aa CRO. Anybody ilike to donate one? BAA. 420 	MAKE FROM $\$ 14$ to $\$ 140$ A WEEK. Work at home, full or part-time. All ages, all localities. No machine or kits to buv. Splendid PREMIUM to early-comers. FREE Splendid PR details from $\begin{aligned} & \text { Dedt. RH36. } \\ & \text { BOX } \\ & \text { (Send } \\ & \text { Stamp } \\ & \text { stor } \\ & \text { for } \end{aligned}$
	Lyons Road, Fivedock. N.S.W. Phone 83-7321. BRAMCO Speaker transformer 6000 for Mulard Sorrento, vic.	
Vrite 94 Albion Road. Ashburton, Vic.		
${ }^{\text {ted }}$	WANTED. All surplus Radio and TV parts. 	
	READER SERVICE	TRANSMSTR SEMME
led lems at halif price. Real hi-f unlt,	$\frac{\text { READER SERVICE }}{\text { TAPE RECORISTSI A R S }}$	IL. JAPANESE AND LOCAL SETS
 	TAPE RECORDISTSI A.T.R.S. Invites E.A. readers to attend a meeting at,.7.30 p.m. ${ }^{\text {on }}$, 11 th July cutters Bay. Sydney. All weicome. Admisslon Trade demonstratlon. Further detalls, phone Trade $43-668$ demonstration (Sydney) after Furthe hours.	REPAIR
Wickham, N.s.W.		
$\mathrm{K}_{\text {transistor }}^{\text {tignition }}$ kits, new but shop N.S.W 61.4908 .	PRE-RECORDED TAPE LIBRARYY ${ }^{\text {Tape }}$ recorder owners. Join the Australlan Tape RecordingSol Soclety a and have access to over maga:ine. news-tapes at 60 hire . tapes. tape and equipment discounts. Send 40c. N.S.W.	Aristone Aurora Belair Berlin Crown Fuiiya General Hitachi Kenco Mariner Mitsubishi Nanaola National Nivico Sanyo Sony Spica Standard Sharp Toshiba Yashica
	TRANSFORMERS wound output or mains and 	
rour own transistor radio for 99/6, 		Sharp Toshiba Yashica
	REPAIRS to recelvers, transmitters, construction. testing. TV allonments. x tal concs.in speciallised 	PETER G. BROUGHTON
		211 George Street, Sydney. Tel. 27-583। (3 lines)
	$T A P E$ to disc service ${ }^{\text {Take advantage of }} \mathbf{W}$. and needing a tape to disc service. W. When next 	

SUBSCRIPTION RATES

PER YEAR

Commonwealth, Fiii, N. Guinea	$\$ 4.10$	$£ 2.1 .0$
United Kingdom \& N. Zealand	$\$ 4.60$	£A2. 6.0
British Dominions	$\$ 4.60$	£A2. 6.0
Elsewhere	$\$ 5.60$	£A2.16.0

POST THIS COUPON TO:-

The Circulation Manager, ELECTRONICS Australia, Box 2728, G.P.O., Sydney. Australia.

Name
Address
Enclosed is \$
for years. Start with
(Please use cheque, money order, etc. Do not enclose cash)

Agfa-Gevaert
Amalgamated Wireless (A'sla) itd Amalgamated Wireless valve Co. Pty Amplion (A° 'sia) 'Pty. itd. Arrow Electronics Pty. Ltd.
Astronic Imports Divislo
"Attention"
Audlo Engineérs Piy 'itd., 107 , iis;
Aust. General Electric Pty, Ltd. . .
Pty. Ltd.
Bright Star Radio
Broadway Electronics Pty. Lid.
Broadway Electronics (Saies) Pity.
Carter, P. Radlo and TV Service
Chapman. Maurlce and Co, Pty.
Liassic Radio 60. 84, 100, inside Fr
Classic Radio Avertisements
Classified Advertisements
Comtel International (Vic.) Pity. Lid.
Control Data Australla Pty Lid.
Convoy International Pty. Ltd. .
C.R.E. Institute.

Danish Hi-Fi Pty. Ltd
Deltch Bros.
Dept, of Supply
Dynacoustic Electronic Pty. Lid.
Electronlc Developments Pty. Ltd.
Encel
Electronics Pty. Ltd., 19.
Falrchlld Australla Piy. Ltd.
Ferrls Bros. Pty.
General Accessorles
Goodmans Industrles Pty Lt

Grenvilie Publishing Co. i. .. 7nside ${ }^{85}$
Haco Dlstributing Agencles Pty. Ltd.
Ham Radlo Suppllers
Hodges Sound System

International Correspondence Schoois Jacoby, Mitchell and Co. Pty. Ltd. Johinston. D. R. and Co. Pty. Lid. :
Klapp Electronics Pty. Ltd,
Lafayette Electronics plvision
Letraset Australla Pty. Ltd.
Levinson, H. Pty. Ltd. ...
Magnetic Sound Industries
Magrath, J. H. and Co. Piy. itd. is
Manufacturers Spec. Prod. Pty. Ltd. 3
Mastersound Sales Pty. Ltd.
Matson Automotive Ind. Pty. Litd.
McLellan. Wm. J. and Co. Pty. Ltd Modern Sclence Supplles

National Radio Supplies
O'Rourke Industries
Paton Electrical Pty, Ltd.
Philips Electrical Pty. Ltd
Precision windings
Pye Pty. Ltd. .
Radio Despatch Service
Radio House Pty. Ltd
R.C.S. Radlo Pty. Ltd

Recorded Music Salon
Rosicruclans (Amore)
Rowe, H. and Co. Piy. Lid.
Sansul Electric Co Ltd SCEL Pty. Ltd.
Seiectronic Components
Shalley. Peter Electronics Pty. Lidi. Stott's Tech. Correspondence Collegi Sure Brite Picture Tubes
Technical Book and Magazine Co Technical Training int. Pty. Lid.

Thomas Electronics of Aust. Pty. itc Thought Power rio Corporation

United Radio Distributors Pty. Ltd. Unlted Trade Sales Pty. Ltd. Lid.

Warburton Franki Ltd.
Watkin Wynne Pty. Ltd.
Weston Electronics Pty. Lid
Willis, W.E. Trading Co. Po. . . Wireless institute of Australla (N.S. \dot{W} Wreless Institute of Aust. (Vic.) Wonder Wool Ptv. Ltd

Read what the expents say

IPERFECTION in PERFORMANCE

'free from rumble. wow or flutter)

aintained over years of trouble-free service

ing matches the

NEW LABCRAFT - SRT TURNTABLES

her improved, with NEW features that include :-
active matt black baseplate with chrome ting screws. Large diameter motor spindle 3 speed drive. Improved intermediate wheel nbly. Sag-proof motor suspension. Machined zast aluminium ring on platter. And, on the nodel, black easy clean mat on chrome turnき, new chrome-plated speed change with rged knurled speed adjustment knob.
srating these advanced design features to enstained perfection in performance over long s of operation:-
ial flexible rim-belt drive from truly vi-ion-free patented motor suspension which
isolates all vibration from baseplate - gives perfect performance completely free of rumble, wow and flutter.

* Asynchronous motor (not tied to mains frequency) with special governor making motor speed independent of mains voltage and frequency with variable speed adjustment of plus or minus 10%.
* Drive spindle ground to extremely fine tolerances - nylon and bronze bearings are selflubricating, virtually service free.
Attractive Danish design polished wood bases, as illustrated, available in Ash, Teak or Palisander, from $\$ 9.35$.
abcuaft - Australia's most popular true hi-fi turntables!

$\frac{\text { The } 655 \text { De Luxe Model }}{12^{\prime \prime} \text { mat, Retail } \$ 69.36}$
smoked-plastic dust covers also available, \$12.22

> leading retailers throughout Australia including:-
V. United Radio Dist., Shop 32, Ash St., Sydney Bardsley Imp. Tdg., Co., 166D Glebe Rd., Glebe RRA J.B.Young Ltd., Kingston, Canberra MACK'S ELECTRONICS, 199 Rundle St., Adelaide Truscott Electronics, 62 Hindmarsh Sq., Adelaide

STRALIAN AGENTS

R.D
6 Railuay Halk, Camllerervell. Victoria. Telephone: 8212.56.

VIC. Danish Hi-Fi Pty. Ltd., 66 Mayston St., Camberwell
Q'LD. (Distributors) Brisbane Agencies, 76 Wickham St., Fortitude Valley
G.R.D. INSTRUMENTS PTY. LTD.
6 RAILWAY WALK,

6 RAILWAY WALK, CAMBERWELL, VIC
NAME
ADDRESS

IUU

CAN EARN

BIG MONE

IN

 TELEVISIO
ASK YOURSELF THESE 3 OUESTIONS!

1. Am I in a dead-end job? 2. Could I earn more by learning more? 3. Could I use my spare time to get ahead?
If the the answer is yes, there is room for you in radio/television!

NOW IS THE TIME TO TRAIN!

Does your job offer good prospects - real security? Does it hold your interest? If not, now is the time to do something about it. Television is expanding daily. It's the most exciting subject you can study. The sky's the limit for the trained man . . . but only the trained man. Radio and television technicians are in huge demand. Train for success now, in Australia's fastestgrowing industry! Join the ranks of skilled men . . . the Australian Radio and Television College can train you for a bright future with unlimited prospects. Send for the free booklet "Careers in Radio and Television" and find out how A.R.T.C. can bring ycu success-in your own business or as well-paid technical staff!

A.R.T.C. CAM TRAIN YOU AS IT HAS THOUSAKDS OF OTHERS

For over 30 years A.R.T.C. has successfully trained thousands of progressive Australians who realised how much the training could mean to them. Now they're making big money in radio and television. Training can bring you

FOR A FEW PENCE PER DAY YOU CAN STUDY THE A.R.T.C. WAY
in your spare time, you can equip yourself for a rewarding career in radio/television. The future belongs to the trained.
The A.R.T.C. "Service Engineering Course" teaches you from the .ground up . . . step by step . . . at your own pace. Remember, opportunity is always knocking for the trained man!

PRACTICAL UP.TO-DATE LESSOHS

At the work benches and lecture halls of A.R.T.C. - or in your own home by correspondence - you can learn every necessary aspect of radio and television, every application of fundamental principles. The Course gives you both basic and advanced instruction in all phases.

No previous experience or high educational standard required . . A only enthusiasm and normal intelligence. A.R.T.C. will give you made easy to understand by numerous illustrations and diagrams. The Course adapts itself trations and diagrams. The Course adapts itself
to your requirements, your speed. It's up to you! Instruction is individual and intensely practical.

THOUSANDS OF SUCCESSFUL STI
HAVE PROVED. THIS
Make spare-time money!
Make your spare time earn for you while training at hom

Many students make extra after only a few weeks' tuitior the modern A.R.T.C. workshc more convenient.

GET INTO ONE OF TH PROFITABLE GARE IN RADIO/TELEVIS

GET INTO ONE OF TF PROFITABLE CAREEF
There is a career for you in the many phases of radio/televisi cluding manufacture, servicin search. sales, executive positic broadcasting and television, forces.
A.R.T.C. can help you gain these sought-after careers. Rem it's the trained man who wins, time!

MAIL COUPON NO

Safeguard your future! You are invited in the coupon below. A.R.'I.C. will I by return their big free and post-free "Careers in Radio and Television." citing book shows you definite steps ceed in life and find satisfaction in worthwhile job well.

AUSTRALIAN RADIO AND TELEVISION COLLEGE PTY. LTD.
 E. S. E A. BANK BUILDING,
 Cnr. Broadway and City Road, Sydney.
 (Opp. Grace Bros.) Phone 211-4244 (3 lines.)

AUSTRALIAN RADIO \& TELEVIS COLLEGE PTY. LTD.,

206 Broadway, Sydney, N.S.W.
Dear Sir,
Please send me, without obligation, y booklet "Careers in Radio and Television
\qquad

[^0]: Melbourne • Sydney • Brisbane • Adelaide • Perth

[^1]: N.S.W.: 443 Kent St., Sydney 29-1275/6 VIC.: 368 Little Bourke St., Melbourne 67-11 W.A.: 91 Hay St., Sublaco, Perth 8-4988 QLD.: King \& King, 77 Queen St., Brisbane . . 2-37 S.A.: 77 Wright St., Adelaide 51.5

[^2]: Sole Agent: Jacoby, Mitchell \& Co., Pty., Ltd. Head Office: 469.475 Kent Street, Sydney Tel: 26-2651

[^3]:

 Head Office:
 Sydney office:
 28 Elizabeth Street, Melbourne, Vic. 22 Ridge Street
 Tel. 63 8101* Tel. 923890
 S.A.: Eilco Sales PIy. Ltd.. 7-9 Osmond Terrace, Norwood, S.A. Tel. 634844 Q'land: Sydney G. Hughes. 154-158 Arthur St., New Farm, Brisbane. Tel. 581014 W.A.: Athol M. Hill. 613-615 Wellington Street, Perth. Tel. 217861

 Tas.: K. W. McCulloch Pit. Lid., 109 York Street, Launceston. Tel. 25322 A.C.T.: Australian Physical Laboratories. P.O. Box 225. Canberra Citv. Tel. 43010 (Mr. J. E. Howe)
 N.T.: Pfilzner's Music House. Smith Streel. Darwin. Tel. 3801

[^4]: |ำแ

 * Reproduced by arrangement with
 "Gramophone" magazine.

[^5]: 167 Queen Street, Melbourne. 679161 - 70 Merivale Street, Brisbane. 41631 Cnr. Darby and King Streets, Newcastle. 25166 - Cnr. William and Newcastle Streets, Perth. 28 3425-6
 42 Frederick Street, Launceston. 21804 - 123 Murray Street, Hobart. 3 3836-7

[^6]: Interstate Representatives-VIC.: D. G. Lockwood \& Co. Piy. Lid.. 810 Glenterrie Rd./ Hawthorn. QLD.: A. E. Harrold Pty. Ltd., 23 Charlotte St. Brishane SOUTH AUST: Stephen \& Company, 53 Wyatt St., Adelaide, WEST AUST.: O. F. Gamble Pty. Ltd., 888 Hay St., Perth.

[^7]: sand notes of Divisional and Club ries submitsed for inclusion in columns should be forwarded to Pierce Healy, 69 Taylor St., Banksfown, N.S.W.

[^8]: As a service to readers "ELECTRONICS Australia" is able to offer: (1) Photographs, dye-line prints and other filed material to do with constructional projects and (2) A strictly limited degree of personalised assistance by mail or by reply through the columns of the magazine. Details are set out below: REPRINTS: For a 20 c fee, we will supply circuit data, as available from our files. The amount of data available varies but in no case does it include material additional to that already published in the magazine. For complicated projects involving material extracted from more than one issue, an extra fee may be requested. As a rule, requests for circuit data will be answered more speedily if the circuits are positively identified and the request is not complicated by questions requiring the attention of technical personnel. Where articles are not on file, we can usually provide a photostat copy at 20c PER PAGE.
 PHOTOGRAPHS, DYE-LINE PRINTS: Original photographs are available for most of our projects, rom 50c plus 8c postage for a 6 in x 8in glossy print. In addition, chassis dye-line prints are available for most projects for 50 c each; these show dimensions and the positions of holes and cut-outs for metal-working but give no details of wiring.
 BACK NUMBERS: A fairly good selection is available. On issues up to 6 months old there is a surcharge of 5 c . On issue from seven to 12 months old the surcharge is 10 c . Over 12 months, it is 20c. Package and postage is 10c extra.
 REPLIES BY POST: This provision is made primarily to assist readers in matters relating directly to articles and projects published in "ELECTRONICS Australia" within the last twelve months. Note, however, that we cannot provide lengthy answers, undertake special research or modifications to basic designs. A $20 c$ query fee must be enclosed with letters to which a postal reply is required; the inclusion of an extra fee does not entitle correspondents to special consideration.
 OTHER QUERIES: Technical queries which fall outside the scope of "Replies by Post" may be submitted without fee and may be answered through the columns of the magazine at the discretion of the Editor. Technical queries will not be answered by telephone.
 COMMERCIAL EQUIPMENT: "ELECTRONICS Australia" does not maintain a directory of commercial equipment, or circuit files of commercial or ex-disposals receivers, amplifiers, etc. We are therefore not in a position to comment on proposed adaptation of such equipment, or on its general design. Prices, specifications or other assistance must be sought from the appropriate advertiser or agent.
 REMITTANCES: These must be in a form negotiable in Australia. Where the charge may be in doubt, an open cheque, endorsed with a limitation, is recommended.
 ADDRESS: All requests for data and information, as set out above, should be directed to The Assistant Editor, "ELECTRONICS Australia," Box 2728 G.P.O., Sydncy, New South Wales. Other correspondence should be directed to The Editor.

